Đáp án B.
Số tam giác có 3 đỉnh là 3 trong 15 điểm đã cho bằng số cách chọn 3 điểm trong 15 điểm đã cho và bằng C 15 3 (không quan tâm đến thứ tự đỉnh).
Đáp án B.
Số tam giác có 3 đỉnh là 3 trong 15 điểm đã cho bằng số cách chọn 3 điểm trong 15 điểm đã cho và bằng C 15 3 (không quan tâm đến thứ tự đỉnh).
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc P là:
A. 10 3
B. A 10 3
C. C 10 3
D. A 10 7
Cho đa giác đều có 15 đỉnh. Gọi M là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên một tam giác thuộc M, tính xác suất để tam giác được chọn là tam giác cân nhưng không phải là tam giác đều
A. 3/91
B. 18/91
C. 3/13
D. 1/26
Cho tập A gồm n điểm phân biệt không có 3 điểm nào thẳng hàng. Tìm n biết rằng số tam giác mà 3 đỉnh thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.
A. n = 6.
B. n = 12.
C. n = 8.
D. n =15.
Cho đa giác đều có 15 đỉnh. Gọi M là tập tất cả các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên một tam giác thuộc tập M, tính xác suất để tam giác được chọn là một tam giác cân nhưng không phải là tam giác đều.
A. 73/91
B. 18/91
C. 8/91
D. 91/18
Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên?
A. 336
B. 56
C. 168
D. 84
Cho tập hợp M gồm 15 điểm phân biệt. Số vectơ khác 0 → , có điểm đầu và điểm cuối là các điểm thuộc M là
A. C 15 2
B. 15 2
C. A 15 2
D. A 15 13
Cho tập hợp M gồm 15 điểm phân biêt. Số vecto khác 0 → , có điểm đầu và điểm cuối là các điểm thuộc M là
A. C 15 2
B. 15 2
C. A 15 2
D. A 15 13
Trong mặt phẳng cho 16 điểm , trong đó không có 3 điểm nào thẳng hàng
a, Hỏi vẽ được bao nhiêu doạn thẳng đi qua các điểm đã cho
b, Hỏi vẽ được bao nhiêu tam giác có 3 đỉnh là 3 điểm trong các điểm đã cho
Gọi S là tập hợp tất cả các điểm M(x;y) có tọa độ là các số nguyên thỏa mãn 0 ≤ x ≤ 4 ; 0 ≤ y ≤ 4 . Chọn ngẫu nhiên 3 điểm thuộc S. Xác suất để ba điểm được chọn là ba đỉnh một tam giác bằng
A. 129 140
B. 217 230
C. 108 115
D. 1077 1150