Số cách xếp cho số 1 là: \(C^2_7=21\)
Số cách xếp cho 3 số 2 là: \(C^3_5=10\left(cách\right)\)
Số cách chọn ccho 2 vị trí còn lại và sắp xếp lại là:
\(A^2_3=6\left(cách\right)\)
=>Có 21*10*6=1260(cách)
Số cách xếp cho số 1 là: \(C^2_7=21\)
Số cách xếp cho 3 số 2 là: \(C^3_5=10\left(cách\right)\)
Số cách chọn ccho 2 vị trí còn lại và sắp xếp lại là:
\(A^2_3=6\left(cách\right)\)
=>Có 21*10*6=1260(cách)
Gọi S là tập hợp các số tự nhiên gồm 9 chữ số được lập từ X = {6;7;8}, trong đó chữ số 6 xuất hiện 2 lần; chữ số 7 xuất hiện 3 lần; chữ số 8 xuất hiện 4 lần. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6 là
A . 2 5
B . 11 12
C . 4 5
D . 55 432
Cho tập E = 1 ; 2 ; 3 ; 4 ; 5 ; 6 . Có bao nhiêu số tự nhiên có 6 chữ số tạo thành từ tập E, biết có 1 chữ số xuất hiện đúng 1 lần, 1 chữ số xuất hiện đúng 2 lần và 1 chữ số còn lại xuất hiện đúng 3 lần (ví dụ a b c b c c ¯ ; a , b , c ∈ E ).
A. 14 400 số
B. 7200 số
C. 3600 số
D. 28 800 số
Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm bảy chữ số, trong đó chữ số 2 xuất hiện đúng ba lần.
A.31203
B.30240
C.31220
D. 32220
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 8 chữ số, trong đó chữ số 1 và chữ số 6 có mặt đúng 2 lần còn các chữ số khác xuất hiện 1 lần.
Cho tập A = {3;4;5;6}. Tìm số các số tự nhiên có bốn chữ số được thành lập từ tập A sao cho trong mỗi số tự nhiên đó, hai chữ số 3 và 4 mỗi chữ số có mặt nhiều nhất 2 lần, còn hai chữ số 5 và 6 mỗi chữ số có mặt không quá 1 lần.
A. 24
B. 30
C. 102
D. 360
Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số:Có 8 chữ số trong đó chữ số 1có mặt 3 lần, chữ số 4 xuất hiện 2 lần; các chữ số còn lại có mặt đúng một lần.
A. 1200
B. 6480
C. 2940
D. Tất cả sai
Cho tập A={3;4;5;6}. Tìm số các số tự nhiên có bốn chữ số được thành lập từ tập A sao cho trong mỗi số tự nhiên đó, hai chữ số 3 và 4 mỗi chữ số có mặt nhiều nhất 2 lần, còn hai chữ số 5 và 6 mỗi chữ số có mặt không quá 1 lần.
A.24.
B.30.
C.102.
D.360.
Cho . Từ tập X lập được bao nhiêu số gồm 4 chữ số khác nhau có xuất hiện chữ số 1
A. 204
B. 240
C. 96
D. 360
Cho tập E = {1;2;3;4;5;6}. Có bao nhiêu số tự nhiên gồm 6 chữ số mà các chữ số đều thuộc E, đồng thời chữ số nào mà xuất hiện thì xuất hiện đúng hai lần?
A. 14.400 (số)
B. 12.000 (số).
C. 9.600 (số)
D. 10.800 (số).
Mọi người giúp mình câu này được không ạ? Cho mình cảm ơn ạ.
Từ các chữ số 0; 1; 2, 3, 5; 6 có thể lập được bao nhiêu số tự nhiên gồm 10 chữ số trong đó chữ số 1 hiện diện 3 lần, chữ số 2 hiện diện 2 lần còn các chữ số khác hiện diện chỉ 1 lần.