Cho tập E = 1 ; 2 ; 3 ; 4 ; 5 ; 6 . Có bao nhiêu số tự nhiên có 6 chữ số tạo thành từ tập E, biết có 1 chữ số xuất hiện đúng 1 lần, 1 chữ số xuất hiện đúng 2 lần và 1 chữ số còn lại xuất hiện đúng 3 lần (ví dụ a b c b c c ¯ ; a , b , c ∈ E ).
A. 14 400 số
B. 7200 số
C. 3600 số
D. 28 800 số
Từ các chữ số 1,2,3,4 ta có thể tạo thành bao nhiêu số tự nhiên gồm 6 chữ số, trong đó chữ số 1 xuất hiện đúng 3lần, ba chữ số 2,3,4 hiện diện đúng 1 lần.
A. 120
B. 24
C. 360
D. 384
Gọi S là tập hợp các số tự nhiên gồm 9 chữ số được lập từ X = {6;7;8}, trong đó chữ số 6 xuất hiện 2 lần; chữ số 7 xuất hiện 3 lần; chữ số 8 xuất hiện 4 lần. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6 là
A . 2 5
B . 11 12
C . 4 5
D . 55 432
Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm bảy chữ số, trong đó chữ số 2 xuất hiện đúng ba lần.
A.31203
B.30240
C.31220
D. 32220
Có bao nhiêu số tự nhiên có 6 chữ số mà các chữ số của nó đều thuộc E = 0 ; 1 ; 2 .
A. 216 số.
B. 180 số.
C. 486 số.
D. 729 số.
Có bao nhiêu số tự nhiên có tám chữ số trong đó có ba chữ số 0, không có hai chữ số 0 nào đứng cạnh nhau và các chữ số khác chỉ xuất hiện nhiều nhất một lần.
A. 151200
B. 846000
C. 786240
D. 907200
Có bao nhiêu số tự nhiên có tám chữ số trong đó có ba chữ số 0, không có hai chữ số 0 nào đứng cạnh nhau và các chữ số khác chỉ xuất hiện nhiều nhất một lần
A. 786240
B. 907200
C. 846000
D. 151200
Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.
A . 1400 19683
B . 560 6561
C . 1400 6561
D . 2240 6561
Có bao nhiêu số tự nhiên có 5 chữ số mà các chữ số của nó đều là 2 hoặc 3 và nhất thiết trong mỗi số tự nhiên đó đều phải có mặt đồng thời cả chữ số 2 và chữ số 3.
A. 25 số
B. 28 số
C. 30 số
D. 32 số