Đáp án: D
Đoạn [a; b] = { x ∈ R: a ≤ x ≤ b } { x ∈ R: -4 ≤ x ≤ 0 } = [-4; 0].
Đáp án: D
Đoạn [a; b] = { x ∈ R: a ≤ x ≤ b } { x ∈ R: -4 ≤ x ≤ 0 } = [-4; 0].
Cho các tập hợp A = {x ∈ R : (x2 - 4) (x2 - 1) = 0}; B = {x ∈ R : (x2 - 4) (x2 + 1) = 0}; C = {-1; 0; 1; 2}; D = {x ∈ R : x 4 - 5 x 2 + 4 x = 0}. Khẳng định nào sau đây đúng?
A. A = B.
B. C = A.
C. D = B.
D. D = A.
Bài 4.Tập hợp nào dưới đây là tập rỗng:
a)A={\(\varnothing\)}
b)B={x\(\in\)R|x2+1=0}
c)C={x\(\in\)R|x< -3 và x>6}
Bài 5.Tìm tất cả tập con của các tập hợp sau:
a)A={3;5;7}
b)B={a;b;c;d}
c)C={\(\varnothing\)}
d)D={x\(\in\)R|(x-1)(x2-5x+6)=0}
Bài 6. Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B\(\subset\)X\(\subset\)A.
Cho các tập hợp A = {x ∈ R: x2 + 4 = 0}; B = {x ∈ R: (x2 - 4)(x2 + 1) = 0}; C = {-2; 2}; D = {x ∈ R: |x| < 2}. Khẳng định nào sau đây đúng?
A. A ⊂ B.
B. C ⊂ A.
C. D ⊂ B.
D. D ⊂ C.
Cho elip 3x2 + 4y2 – 48 = 0 và đường thẳng d: x - 2y + 4 = 0. Giao điểm của d và Elip là
A. (0; - 4); (-2; -3) B. (4; 0); (3; 2) C. (0; 4); (-2; 3) D. (-4; 0); (2; 3)
cho 2 tập hợp A={x\(\in\)R|(x-1)(x-2)(x-4)=0}, B={n\(\in\)N|n là ước của 4}. 2 tập hợp A và B, tập hợp nào là tập con của tập còn lại. 2 tập hợp A và B có bằng nhau không.
Trong các tập sau, tập nào là tập con của tập nào?
A = { 1; 2; 3 } B = { \(x\in N\) | x < 4 }
C = ( 0; \(+\infty\) ) D = { \(x\in R\) | \(2x^2-7x+3=0\) }
PHẦN TỰ LUẬN: Bài 1: Cho A={ x€R| (x^4 -16)(x² -1)=0} và B={x€N| 2x-9≤0}. Tìm tập hợp X sao cho: X⊂B\A Bài 2: Cho tập hợp A={-1;1;5;8}, B="gồm các ước số nguyên dương của 16"
Nghiệm của phương trình | x 2 - 3 x + 4 | = | 4 - 5 x | là:
A. x = 0, x = 2, x = 8 và x = -4
B. x = 0 và x = 4
C. x = -2 và x = 4
D. x = 1 và x = -4
Tập nghiệm của bất phương trình - 3 x 2 + x + 4 ≥ 0 là:
A. S = ∅
B. S = (-∞; -1] ∪ [4/3; +∞]
C. S = [-1; 4/3]
D. S = (-∞; +∞)