Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thế Tuấn

Cho tam giác vuông trong đó có một góc bằng trung bình cộng của hai góc còn lại.Cạnh lớn nhất của tam giác đó bằng a. Tính diện tích tam giác đó

Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 20:35

Gọi tam giác vuông đó là ΔABC vuông tại A có \(\widehat{B}=\dfrac{\widehat{A}+\widehat{C}}{2}\)

Theo đề, ta có: cạnh lớn nhất của tam giác đó bằng a

=>BC=a

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)(1)

\(\widehat{B}=\dfrac{1}{2}\cdot\left(\widehat{A}+\widehat{C}\right)\)

=>\(\widehat{B}=\dfrac{1}{2}\left(90^0+\widehat{C}\right)\)

=>\(\widehat{B}-\dfrac{1}{2}\cdot\widehat{C}=45^0\)(2)

Từ (1),(2) suy ra \(\left\{{}\begin{matrix}\widehat{B}-\dfrac{1}{2}\cdot\widehat{C}=45^0\\\widehat{B}+\widehat{C}=90^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{3}{2}\cdot\widehat{C}=-45^0\\\widehat{B}+\widehat{C}=90^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{C}=30^0\\\widehat{B}=90^0-30^0=60^0\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{AB}{a}=sin30=\dfrac{1}{2}\)

=>\(AB=\dfrac{1}{2}a\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+\dfrac{1}{4}a^2=a^2\)

=>\(AC^2=\dfrac{3}{4}a^2\)

=>\(AC=\dfrac{a\sqrt{3}}{2}\)

ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{a}{2}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{a^2\sqrt{3}}{8}\)

Alice
17 tháng 11 2023 lúc 20:37

Gọi tam giác thỏa đề là \( ABC\) ( với \(A>B>C\) )

đề cho tam giác vuông nên suy ra \(A=90^o\)

ta có \(A+B+C=180^o\) , mà theo đề \(A+C=2B\) , suy ra \(B=60^o\)

ta tính \(\text{AB = BC}.cos60^o=\dfrac{a}{2}\)

diện tích tam giác : \(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{a^2\sqrt{3}}{8}\) 


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Thảo
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lê Song Phương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết