Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D
a) Chứng minh rằng BE = CD; AD = AE
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh rằng các tam giác MAB; MAC là tam giác vuông cân
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC
Mọi Người giúp mik nhanh nha , chỉ câu c thui nha, ai nhanh và đúng nhất mik cho 2 tick
Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D
a) Chứng minh rằng BE = CD; AD = AE
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh rằng các tam giác MAB; tam giác MAC là tam giác vuông cân
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Cho △ ABC vuông cân ( AB = AC ), tia p/g của \(\widehat{B}\) và \(\widehat{C}\) cắt AC là AB lần lượt tại E & D
a, CMR : BE= CD, AD= AE
b, Gọi I là giao đ' BE & CD . AI cắt BC ở M. CM : △MAB, MAC là △ vuông cân
c, Từ A & D vẽ các đường thẳng vuông góc vs BE, các đường thẳng này cắt BC lần lượt ở K & H. CMR : KH = KC
1/Cho tam giác vuông cân ABC(AB=AC),tia phân giác các góc B và C cắt AC và AB lần lượt tại E,D
a.Chứng minh rằng:BE=CD và AD=AE
b.Gọi I là giao điểm của BE và CD,AI cắt BC ở M.Chứng minh rằng các tam giác MAB,MAC là các tam giác cân
c.Từ A và D vẽ các đường thẳng vuông góc với BE, các đường này cắt BC lần lượt tại K,H.Chứng minh rằng:KH=KC
2/Cho tam giác ABC vuông tại A,AB<AC,kẻ AH vuông góc với BC.Trên tia HC lấy điểm D sao cho HD=HA.Đường thẳng vuông góc với BS tại D cắt AC tại E
a/Chứng minh AE=AB
b/Gọi M là trung điểm của BE.Tính số đo góc AHM
c/Chứng minh AM>\(\frac{AB+AD+BD}{6}\)
Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
→Giúp mình với ạ←
Cho tam giác ABC vuông cân tại A. Kẻ các tia phân giác của góc B và góc C. Chúng cắt AB ở D và AC ở E.
a) Chứng minh rằng CD = BE và AD = AE
b) Gọi I là giao điểm của CD và BE. Tia AI cắt BC ở M. Chứng minh rằng tam giác MAC và tam giác MBC là các tam giác vuông
c) Từ D và A kẻ các đường vuông góc với BE. Chúng cắt BC lần lượt tại H và K. Chứng minh rằng HK = CK
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC b) Góc BMC = 120o
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.
Chứng minh rằng : Góc PCQ = 45o
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.