cho tam giác ABC có ba góc nhọn (AB<AC), có 2 đường cao BE,CF cắt nhau tại H. a/ chứng minh tam giác ABE đồng dạng tam giác ACF. b/ chứng minh AB.AF=AC.AE c/ gọi O là trung điểm BC, I là trung điểm AH. Chứng minh OI vuông góc EF. d/ Gọi M là giao điểm của OI vè EF. cho biết BAC=60. Tính tỉ số AM/AO
Cho tam giác nhọn ABC có ba đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE đồng dạng với tám giác ACF, từ đó suy ra : AB.AF = AC.AE
b) Chứng minh: DB.DC = DA.DH
c) Gọi I là trung điểm của BC. Đường thẳng vuông góc với IH tại H cắt AB và AC lần lượt tại M và N. Chứng minh: Tam giác AHN đồng dạng với tam giác BIH và H là trung điểm của MN.
Cho tam giác ABC nhọn có AB > AC. Các đường cao AD,BE, CF cắt tại H.
a) chứng minh rằng ∆AFH~∆ADB
b) ∆ AFE~∆ABC và EH là tia phân giác của góc FED
c) gọi I là trung điểm của BC qua H kẻ đường thẳng vuông góc với HI đường thẳng này cắt AB tại M, cắt AC tại N . Chứng minh ∆ IMN cân
Cho tam giác ABC ( AB<AC) nhọn, các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh tam giác AEB và tam giác AFC đồng dạng. Từ đó suy ra AF.AB=AE.AC
b) Chứng minh tam giác AEF và tam giác ABC đồng dạng
c) Gọi K là giao điểm của của EF và BC. Gọi O là trung điểm của BC. Chứng minh rằng KF.KE=KB.KC và KF.KE=KO2 -BC2/4
d) Tia phân giác góc BKF cắt AB tại N và tia phân giác góc BAC cắt BC tại M. chứng minh MN vuông góc AB
P/s: Các bạn giải giúp mình bài trên nhé.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tam giác ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác AEB đồng dạng với tam giác AFC. Tính tỉ số đồng dạng với AB=4cm, AC=6cm.
b) Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh: IE.IF=IM^2-BC^2/4.
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF.
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Cho tam giác nhọn ABC có AB < AC. Ba đường cao AD, BE và CF cắt nhau tại H. AH cắt EF tại I.
a/ Chứng minh tam giác ABE và ACF đồng dạng, tam giác AEF và ABC đồng dạng.
b/ Vẽ FK vuông góc BC tại K. Chứng minh AC.AE = AH.AD và CH.DK = CD.HF.
c/ Chứng minh EI/ED = HI/HD.
d/ Gọi M, N lần lượt là trung điểm của AF và CD. Chứng minh tổng các góc BME và BNE bằng 180o.
Cho tam giác ABC nhọn (AB < AC), 3 đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác ABE đồng dạng ACF từ đó suy ra AB.AF=AC.AE
b) Chứng minh: AFE = ACB
c) Đường thẳng EF cắt AD và tia CB lần lượt tại I và K. Chứng minh: KF. IE = KE . IF
Mong các bạn giúp mình :D