Cho tam giác MNQ có 3 góc nhọn. Vẽ các đường cao NE, QF
a) Chứng minh tam giác MNE đồng dạng tam giác MQF
b) Chứng minh tam giác MEF đồng dạng tam giác MNQ
c) Gọi I, K lần lượt là trung điểm của NQ, EF. Chứng minh IK ⊥ EF
c) Cho NQ = 12cm, diện tích tam giác MEF = 1/9 diện tích tam giác MNQ. Tính diện tích IEF = ?
Câu a,b mk làm dc r .
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac AEB đồng dạng tam giac AFC
b ) Chứng minh : AF.AB = AE.AC và tam giac AEF đồng dạng với tam giac ABC
c ) Gọi K là giao điểm của AH và EF . Chứng minh : KH.AD = AK.HD
Cho Tam giác ABC đều. đường cao AH. Gọi D là một điiểm trên BC và K là trung điểm của AD. Vẽ DE vuông góc với AB;DF vuông góc với AC. Chứng minh rằng
a/ Tam giac KHF đều
b/ HK vuuong góc với EF
Cho tam giac ABC có 3 góc nhọn . Đường cao AD,BE của tam giác ABC cắt nhau tại H.
a) chứng minh: tam giác ADC đồng dạng tam giác BEC
b)Chứng minh : HA*HD=HB*HE
c) đường phân giác của góc ACB cắt đường cao EF của tam giác EBC và đoạn thẳng BE lần lượt tại N và M. Chứng minh NF/NE=ME/MB
bài 1: cho tam giác ABC có 3 góc đều nhọn. Gọi D,E,F lần lượt là trung điểm của AB,AC và BC. Vẽ đường cao AH.CMR
a) AH đối xứng qa DE
b) tứ giác DEFH là hình thang cân
Bài 2: cho tam giac abc can tai a lay diem m bat ki thuoc canh bc ke md vuong goc ab, me vuong goc ac. goi d' la diem doi xung d qua bc.
a. cm : 3 diem e,m,d' thang hang
b. ke bf vuong goc ac. cm: ed'=bf
Bài 3: cho tam giac abc vuong tai a, duong cao ah. goi e,f theo thu tu cac diem doi xung cua h qua ab,ac.
a. cm a la trung diem ef
a. cm bc=be+cf
GIÚP MK VỚI...
Cho tam giác nhọn ABC, vẽ các đường cao BD, CE.
a) Chứng minh rằng: ΔADB ~ ΔAEC và AE.AB = AD.AC.
b) Chứng minh rằng: ΔADE ~ ΔABC và .
c) Vẽ EF vuông góc với AC tại F. Chứng minh rằng: AE.DF = AF.BE.
d) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BD, CE.
Cho tam giac DEF vuông tại D. Gọi M , N lần lượt là trung điểm EF và FD. Vẽ K đối xứng với M qua N.
a. Chứng minh tứ giác DEMN là hình thang vuông và MDKF là hình thoi.
b. Vẽ I là hình chiếu của M trên ED . Chứng minh tứ giác EINM là hình bình hành và tứ giác IDNM là hình chữ nhật.
c. Trên cạnh DF lấy một điểm Q sao cho DQ = DF. Chứng minh : EQ , IN và DM đồng quy tại S .
Cho tam giac DEF vuông tại D. Gọi M , N lần lượt là trung điểm EF và FD. Vẽ K đối xứng với M qua N.
a. Chứng minh tứ giác DEMN là hình thang vuông và MDKF là hình thoi.
b. Vẽ I là hình chiếu của M trên ED . Chứng minh tứ giác EINM là hình bình hành và tứ giác IDNM là hình chữ nhật.
c. Trên cạnh DF lấy một điểm Q sao cho DQ = 1/3DF. Chứng minh : EQ , IN và DM đồng quy tại S .
cho tam giác ABC có 3 góc nhọn, các đường cao BD, CE của tam giác cắt nhau tại H. chứng minh rằng:
a) tam giác ABC đồng dạng với tam giac ACE
b) HE.HC=HD.HB
c) kẻ đường vuông góc với AB tại B đường vuông góc voi AC tại C cắt nhau tại K. gọi M là trung điểm cua BC. chứng minh: ba điểm H,M,K thẳng hàng
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK