Cho tam giác MNP vuông tại N. Gọi D là trung điểm của MP. Từ D kẻ DE vuông góc với MN (M thuộc MN), DF vuông góc NP ( F thuộc NP). Trên tia DF lấy điểm I sao cho F là trung điểm của DI
a) Tứ giác NEDF là hình gì? Vì sao/
b) Chứng mình F là trung điểm của NP
cho tam giác MNP vuông tại M có MN=4cm;MP=3cm
a)tính đọ dài NP và so sánh các góc của tam giác MNP
b)Trên tia đối tia PM lấy A sao cho P là trung điểm của đoạn thẳng AM.QUa P dựng đường thẳng vuông góc với AM cắt AN tại C.C/m tam giác CPM=tam giác CPA
c)C/m CM=CN
d)GỌi G là giao điểm của MC và NP.TÍnh NG
e)Từ A vẽ đường thẳng vuông góc với NP tại D.Vẽ tia Nx là tia phân giác của góc MNP,vẽ tia Ay là tian pg của PAD,tia Ay cắt các tia NP,Nx,NM lần lượt tại E,H,K.C/m tam giác NEK cân
Cho tam giác ABC có các trung tuyến BE và CF cắt nhau tại G.Trên tia GE lấy điểm M sao cho E là trung điểm của GM.trên tia GF lấy điểm N sao cho F là trung điểm của GN.
Cm NB //AG//MC
Cho tam giác GMA vuông tại G có GM<GA. Gọ Q là trung điểm của MA. Trên tia đối của tia QG lấy điểm D sao cho QD=QG
1. Chứng minh GMAD là hình chữ nhật.
2. Lấy điểm E sao cho M là trung điểm của GE chứng minh MEDA là hình bình hành
3. EQ cắt MD tại K. Chứng minh EK = 2KQ
4. Vẽ GH vuông góc DE tại H. GH cắt MA tại F. Gọi I và B thứ tự là hình chiếu của F lên GM, GA chứng minh rằng:
a. Tứ giác GBFI là hình chữ nhật
b. DE = 2MQ
c. Gọi J là trung điểm của FE. Chứng tỏ BJ vuông góc BI
d. Chứng tỏ GD = 2HQ
e. Chứng minh tam giác MHA vuông
Ai trả lời đúng = 5 sao
Cho ∆MNP nhọn MN < NP. gọi H, T lần lượt là trung điểm của MN, NP a) Chứng minh HT là đường trung bình ∆MNP b) Chứng minh tứ giác MHT P là hình thang. c) Trên cạnh MP lấy điểm D sao cho DM = MN. Trên tia đối tia T D, lấy điểm E sao cho T E = T D. Chứng minh tứ giác NDPE là hình bình hành. giúp mik đi mn ;(
cho tam giác mnp vuông tại m đường cao mh, trên tia đối của mp lấy a sao cho an vuông np. i trung điểm mh, pi cắt na tại a. k là giao điểm oi và nm.
chứng minh a, k, h thằng hàng
Cho tam giác MNP vuông tại A (MN<MP), đường trung tuyến MI ,đường cao ME qua E kẻ đường thẳng vuông góc với MI, cắt MN và MP theo thứ tự ở A và F.
a, đường thẳng đi qua A và // với Mi cắt NP tại O .Trên tia đối của tia ON lấy điểm B sao cho OB=ON,trên tia đối của tia OA lấy điểm C sao cho OC=OA.Cm:ABCN là hcn
b,CMR:CF//NP
Cho tam giác ABC vuông tại A, AC > AB, M là trung điểm AB, P là điểm nằm trong tam giác ABC sao cho MP vuông góc AB. Trên tia đối của tia MP lấy Q sao cho MP = MQ. Chứng minh APBQ là hình thoi
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB 1) Chứng minh tam giác ABM bằng tam giác CDM 2) Chứng minh Ac vuông góc với DC 3) Gọi E là trung điểm của BC, tia EM cắt AD tại F. chứng minh F là trung điểm của AD.