Xét tam giác MNP vuông tại M (gt) có:
NP2 = MN2 + MP2 (Định lí Py-ta-go)
132 = 122 + MP2
MP2 = 169 - 144
MP2 = 25
MP = 5 (cm)
Vậy : SMPKN = 12 . 5 = 60 (cm2)
Xét tam giác MNP vuông tại M (gt) có:
NP2 = MN2 + MP2 (Định lí Py-ta-go)
132 = 122 + MP2
MP2 = 169 - 144
MP2 = 25
MP = 5 (cm)
Vậy : SMPKN = 12 . 5 = 60 (cm2)
Cho tam giác MNP vuông tại M, MN=9cm, MP=12cm. Phân giác của gics M cắt NP tại I.
a) Tính IN, IP
b) Tính diện tích tam giác MNI
Cho tam giác MNP vuông tại M, MN = 4 cm, NP = 5 cm. Diện tích tam giác MNP là
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Chứng minh tứ giác MHIK là hình chữ nhật.
Cho tam giác MNP vuông tại M (MN<MP) có K là trung điểm của canh NP. Vẽ tại I và tại E
a/ Cho MN = 5cm, MP = 12cm. Tính MK
b/ Chứng minh tứ giác KIME là hình chữ nhật
c/ Chứng minh E là trung điểm của đoạn thẳng MP
d/ Vẽ đường cao MH của tam giác MNP. Chứng minh tứ giác IHKE là hình thang cân
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Biết MHIK là hình chữ nhật. Chứng minh MIPE là hình thoi.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Gọi E là điểm đối xứng của I qua K. Biết MHIK là hình chữ nhật. Chứng minh tứ giác MIPE là hình thoi.
Cho tam giác MNP có góc M=90 độ,cạnh MP=4cm,cạnh NP=12cm gọi Q là trung điểm của cạnh MN,y là điểm đối xứng với P qua Q
a, Tứ giác MINP là hình gì? vì sao
b,Gọi K là trung điểm của cạnh NP.Chứng minh KQ vuông góc với MN
c,Tính diện tích tam giác MNP