a: Xét tứ giác MPNI có
Q là trung điểm chung của MN và PI
Do đó: MPNI là hình bình hành
b: Xét ΔNMP có NQ/NM=NK/NP
nên QK//MP
=>QK vuông góc với MN
a: Xét tứ giác MPNI có
Q là trung điểm chung của MN và PI
Do đó: MPNI là hình bình hành
b: Xét ΔNMP có NQ/NM=NK/NP
nên QK//MP
=>QK vuông góc với MN
Cho tam giác ABC có A= 90 độ, AC = 5cm, BC = 13cm. Gọi I là trung điểm của cạnh AB, D là điểm đối xứng với C qua I.
a) Tứ giác ADBC là hình gì? Vì sao?
b) Gọi M là trung điểm của cạnh BC. Chứng minh: MI vuông góc với AB. Tính diện tích ΔABC.
cho tam giác MNP vuông tại M . Gọi K là trung điểm của NP, H là điểm đối xứng với K qua MP, I là điểm đối xứng với K qua MN, Q là giao điểm của MN và KI
a) tứ giác MRKQ là hình gì ? Vì sao
b)chứng minh tứ giác IMKN; HMKP là hình thoi
c) tam giác MNP cần có thêm điều kiện gì để tứ giác MRKQ là hình vuông
Cho tam giác MNP vuông tại M, có E là trung điểm của cạnh NP, gọi K là điểm đối xứng của M qua E. Tứ giác MNKP là hình gì? Vì sao?
ai giải giúp với ạ sắp kiểm tra rùi ạ=((((((
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Gọi E là điểm đối xứng của I qua K. Biết MHIK là hình chữ nhật. Chứng minh tứ giác MIPE là hình thoi.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
cho tam giác MNP vuông tại M trung tuyến MI . từ I kẻ IK vuông góc với MN tại K, IP' vuông góc với MP tại P. Tứ giác MKIP là hình gì? vì sao .b)Gọi F là trung điểm của MI .CM: K;F;P thẳng hàng .c) Gọi L là điểm đối xứng với I qua P'.CM : MIPL là hình thoi,d)tìm điều kiện của tam giác MNP để tứ giác MIPL là hình vuông