Cho tam giác MNP với MN < MP và góc N nhọn .Trên đường cao MH lấy điểm A ( khác M và H ) .Tia NA cắt MP tại B .CMR
a, AN < AP
b, So sánh AB và BH
cho tam giác MNP với MN<NP và góc N nhọn .Trên đường cao MH lấy điểm A (khác M và H ).Tia NA cắt MP tại B.Chứng minh rằng
a)AN<AP
b) so sánh AB và BH
giúp mh vs các bạn :))
Bài 3: Cho tam giác MNP với MN < MP và góc N nhọn. Trên đường cao MH lấy điểm A (khác M và H). Tia NA cắt MP tại B. Chứng minh rằng:
a) AN < AP
b) So sánh AB và BH
cho tam giác MNP cân tại N trên tia đối của tia MP lấy điểm A trên tia đối của tia PM lấy điểm B sao cho MA = BM a) chứng minnh rằng tam giác NAB là tam giác cân b) kẻ MH vuông góc NA (H THUỘC NA)và kẻ PK vuông góc NP (K thuộc NB) chứng minh MH = PK
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
Cho tam giác MNP vuông tại M.CÓ MN=9cm,NP=15cm
a)Tính MP,so sánh góc N và góc P
b)Kẻ tia đối MH,trên tia MH lấy Q sao cho HQ=MH
Chứng minh những điều sau:
MP=QP ,góc PMH=góc PQH
PN là phân giác góc MPN
góc MNP=góc QNP
c)Lấy E là trung điểm HQ.Qua E kẻ đường thẳng song song với MH cắt MP tại E và cắt QP tại K.Chứng minh F là trung điểm MP.
d)Gọi giao của QF và HP là G.Chứng minh M,G,K thẳng hàng.
Cho tam giác MNP cân tại M, kẻ MH vuông góc với NP tại H. Gọi A là trung điểm của NH. Trên tia đối của tia AM lấy điểm B sao cho AB=AM
a) Chứng minh tam giác MAH=tam giác BAN và BN vuông góc với NP
b) So sánh BN với MN; góc NMA với AMH
c) Gọi I là trung điểm của BP. Chứng minh M,H,I thẳng hàng và NI=1/2 BP
Cho tam giác MNP vuông tại M. Trên cạnh NP lấy điểm E sao cho NE=MN. Tia phân giác của góc N cắt MP ở D.
a) So sánh DM và DE, tính góc NED
b) Tia ED cắt tia đối của tia MN tại K. Chứng minh tam giác DMK= tam giác DEP
c) Chứng minh ND vuông góc với KP
Cho tam giác MNP cân tại M, kẻ MH vuông góc với NP tại H. Gọi A là trung điểm của NH. Trên tia đối của tia AM lấy điểm B sao cho AB=AM
a) Chứng minh tam giác MAH=tam giác BAN và BN vuông góc với NP
b) So sánh BN với MN; góc NMA với AMH
c) Gọi I là trung điểm của BP. Chứng minh M,H,I thẳng hàng và NI=1/2 BP