Trên cạnh BC lấy điểm D sao cho CD=CA. Gọi góc CAD, DAB, ADC lần lượt là A1, A2,D1
Ta có
A=A1+A2=D1+A2=B+2.A2
Theo đề bài ta có A=B+2.C
=>C=A2
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
=>AB/DB=BC/AB
Đặ BC=a ; AB=c ;Ac=b
c/(a−b)=a/c => c2 = a(a−b)
Do các cạnh của tam giác ABC là ba STN liên tiếp và a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4