a)Tam giác PQR cân tại P, có PE vuông góc với QR (E thuộc QR). Chứng minh EQ = ER
b)Tên tia đối của tia QR lấy điểm M, trên tia đối của tia RQ lấy điểm N sao cho QM = RN. Chứng minh tam giác PMN cân.
c)Kẻ QH vuông góc với PM (HPM), kẻ RK vuông góc với PN (K thuộc PN). Cm: PH = RK.
d)HQ cắt KR tại I, tam giác IQP là tam giác gì? ( 6 đ )
Cho tam giác MNP cân ở P, MN = 6 cm, PI là phân giác của góc MPN (I thuộc MN)
a, Chứng minh: Tam giác MPI = Tam giác NPI
b, Kẻ IK vuông góc với PM tại K, IH vuông góc với PN tại H.
Chứng minh: IP là phân giác của góc KIH
c, Trên tia đối của tia IP, lấy điểm Q sao cho IQ = IM
Chứng minh: Tam giác MIQ vuông cân. Tính độ dài MQ.
d, Tam giác MNP cần thêm điều kiện gì để tam giác PKH đều?
Cho tam giác MNP cân ở P , MN=6 , PI là phân giác của góc P ( I thuộc MN )
a) Chứng minh : Tam giác MPI = tam giác NPI
b) Kẻ IK vuông góc với PM tại K , IH vuông góc với PN tại H .
Chứng minh : IP là phân giác của góc KIH
c) Trên tia đối của tia IP , lấy điểm Q sao cho IQ = IM . Chứng minh rằng : Tam giác MIQ vuông cân . Từ đó , tính độ dài đoạn MQ .
d) Tam giác MNP cần thêm điều kiện gì để tam giác IKH đều .
Cho tam giác ABC cân tại A, có góc BAC=30 độ, đường cao BD. Trên tia BD lấy điểm K sao cho BK=AB. Đường phân giác góc A của tam giác ABC cắt BD tại H. Chứng minh:
a) Tam giác ABH = tam giác HAC
b) Tam giác ABK đều
c) Gọi E là trung điểm của AB. Chứng minh CH song song với KE
d) CH = 2 AD
Cho tam giác ABC vuông tại A. Gọi H là trung điểm của cạnh AC. Trên tia đối của tia HB lấy điểm K sao cho HK=HB. Chứng minh:
a) Tam giác ABH= tam giác CKH
b) KC vuông góc với AC
c) AK song song với BC
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
Cho tam giác HIK cân tại H. Kẻ IM vuông góc với HK tại M, kẻ KN vuông góc với HI tại N. Gọi giao điểm của IM và KN là C.
a, chứng minh tam giác HMI bằng tam giác HNK
b, trên tia IM lấy điểm A sao cho MC=MA. Trên tia KN lấy điểm B sao cho NC=NB
Chứng minh HC=HA
c, tam giác HAB là tam giác gì vì sao
Cho tam giác MNP cân tại P. Tia phân giác của góc P cắt MN tạ I.Qua I vẽ IE vuông góc với PM tại Evà vẽ IF vuông góc với PN tại F.
a) Chứng minh: tam giác PIM= tam giác PIN
b) Chứng minh IE=IF
c) IE cắt PN tại H, IF cắt PM tại K.Chứng minh: tam giác PHK cân
d) Chứng minh: EF// HK
Cho tam giác MNP cân tại D kẻ DE vuông góc MN tại I
a, cho IN = 6 cm PI = 8 cm. tính PN ,PN
b, Chứng minh tam giác PMI = tam giác PNI
c, kẻ IH vuông góc PM tại H (H€PM) trên tia đối của tia HI lấy điểm K sao cho HK = HI. Chứng minh tam giác PKI cân
d, chứng minh MK<PN