Cho tam giác đều.Gọi O là trung điểm của BC.trên cạnh AB và AC lần lượt lấy 2 điểm di động M và N sao cho góc MON=60độ Chứng minh chu vi của tam giác AMN không đổi
Đề : cho tam giác ABC đều , O là trung điểm BC , trên AB lấy M , AC lấy N sao cho góc MON = 60* . Chứng Minh : a ) BM.CN không đổi
b) MO, NO lần lượt là phân giác góc BMN và góc CNM
c) chu vi tam giác không đổi khi MN thay đổi tên AB , AC
Cho tam giác đều ABC, M là trung điểm của BC, điểm E di động trên AB. Lấy điểm F trên AC sao cho \(\widehat{EMF}=60^0\). Chứng minh rằng chu vi tam giác AEF không đổi khi E thay đổi.
Cho ∆ ABC đều có O là trung điểm của BC . M thuộc AB, N thuộc AC sao cho góc MON = 60° biết AB = a
A, chứng minh : ∆ OMB đồng dạng vs ∆ NOC. Tính BM.CN
B, CM : NO là phân giác góc CNM
C, CM : chu vi ∆ AMN có giá trị ko phụ thuộc vào điểm M trên AB và điểm N trên AC
Cho tam giác ABC. O là điểm cách đều 3 cạnh của tam giác. Trên cạnh BC lấy điểm M sao cho BM = BA, trên cạnh CB lấy điểm N sao cho CN = CA. Gọi D, E, F lần lượt là hình chiếu của O trên BC, CA, AB. Chứng minh rằng :
a) NE = MF
b) Tam giác MON cân
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!
Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.
Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.
Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.
Cho tam giác ABC, O là điểm cách đều ba cạnh. Trên tia BC lấy điểm M sao cho BM=BA. Trên tia CB lấy điểm N sao cho CN=CA. Gọi D, E, F lần lượt là hình chiếu của O trên BC, CA, AB. Chứng minh rằng:
a) NE=MF.
b)Tam giác MON là tam giác cân.
Cho tam giác ABC, O là điểm cách đều ba cạnh. Trên tia BC lấy điểm M sao cho BM=BA. Trên tia CB lấy điểm N sao cho CN=CA. Gọi D, E, F lần lượt là hình chiếu của O trên BC, CA, AB. Chứng minh rằng:
a) NE=MF.
b)Tam giác MON là tam giác cân.
giúp mình với ạ, cần gấp
1) Cho tam giác ABC có trung tuyến AI. Trên AI lấy điểm G bất kì, BG cắt AC tại E, CG cắt AB tại F. Chứng minh rằng: EF // BC.
2) Cho tam giác ABC có M là trung điểm của BC, điểm N nằm trên cạnh AB sao cho AN = 1/3AB, điểm Q nằm trên cạnh AC sao cho AQ = 2/3 AC, đường thẳng QN cắt đường thẳng AM và BC lần lượt tại điểm P, R.
a) Tính: RB/RC,PA/PM ?
b) Đường thẳng đi qua N song song với BC cắt AC tại T. Chứng minh rằng: CN, BT cắt nhau tại trung điểm của AM.
3) Cho tam giác ABC có trung tuyến AI và trọng tâm G. Qua G dựng đường thẳng d bất kì cắt các cạnh AB, AC lần lượt tại M, N.
a) Chứng minh rằng: AB/AM + AC/AN có giá trị không đổi khi (d) thay đổi.
b) Xác định vị trí của đường thẳng (d) để AM/AB+AN/AC đạt GTNN.
4) Cho tam giác ABC ,một đường thẳng thay đổi cắt các cạnh AB, AC tại E, F sao cho: AB/AE+AC/FA=4 . Chứng minh rằng EF luôn đi qua một điểm cố định.
5) Cho tam giác nhọn ABC và điểm D bất kì trên cạnh BC, lấy một điểm E thuộc đoạn AD, F thuộc đoạn DE. Một đường thẳng qua F song song với BC cắt AB, EB, EC, AC theo thứ tự tại M, P, Q, N. Đường thẳng MD và EB cắt nhau tại R, ND và EC cắt nhau tại S, DP và AB cắt nhau tại G, DQ và AC cắt nhau tại H. Chứng minh rằng:
a) MP/BD=NQ/DC
b) RS // BC
c) GH // RS