Đề : cho tam giác ABC đều , O là trung điểm BC , trên AB lấy M , AC lấy N sao cho góc MON = 60* . Chứng Minh : a ) BM.CN không đổi
b) MO, NO lần lượt là phân giác góc BMN và góc CNM
c) chu vi tam giác không đổi khi MN thay đổi tên AB , AC
Cho tam giác ABC đều, M là trung điểm của BC, E trên ab, f trên ac sao cho góc MCF bằng 60 độ Chứng minh rằng
a. tam giác EBM đồng dạng tam giác MCF
b. tam giác MBE đồng dạng tam giác EMF\(\)\(\dfrac{StamgiacMEF}{StamgiacABC}\)
Cho tam giác ABC cân tại A . M là trung điểm của BC .Lấy E,F lần lượt trên AB ,AC sao cho góc FME = góc ABC.
a) chứng minh BE.CF = BC^2/4.
b) Tìm vị trí của E,F để diện tích tam giác MEF đạt giá trị nhỏ nhất.
c) N là giao điểm của EF và BC . Chứng minh rằng BN/BE - CN/CF luôn không đổi khi E,F di động .
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M, trên tia đối của CB lấy điểm N sao cho AM =CN . Gọi Ilà giao điểm của MN và CD.
GọI E là trung điểm của MN, tia DE cắt BC tại F. Qua M vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng : Tứ giác MFNH là hình thoi.
Chứng minh : Chu vi tam giác BMF không đổi khi m di động trên cạnh AB.
Cho tam giác ABC vuông cân tại A, điểm M nằm trên cạnh BC. Gọi D và E theo thứ tự là chân dường vuông góc kẻ từ M đến AB và AC. Chứng minh khi điểm M thay đổi trên cạnh BC thì chu vi tứ giác ADME không thay đổi
Cho tam giác ABC cân tại A, có BC=2a, M là trung điểm BC, lấy D,E thuộc AB,AC sao cho \(\widehat{DME}=\widehat{B}\)
a) Chứng minh tích BD.CE không đổi
b) Chứng minh DM là tia phân giác của \(\widehat{BDE}\)
c) Tính C=chu vi của tam giác AED nếu tam giác ABC là tam giác đều
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC cân tại A. Từ điểm M trên cạnh BC vẽ MD//AB và ME//AC. Lấy I sao cho DE là trung trực của đoạn MI. Giả sử ID cắt AB tại N. Chứng minh
a) Tứ giác AIED là hình thang cân
b) chu vi tam giác ADN không thay đổi khi M di chuyển trên đoặn BF
Cho tam giác đều ABC, O là trung điểm BC. Trên các cạnh AB, AC lấy M và N sao cho ∠MON = 60o
Chứng minh rằng: Chu vi △AMN không đổi
Mn giúp e vs ạ :((