a: Xét ΔDEG vuông tại D và ΔIED vuông tại I có
góc E chung
=>ΔDEG đồng dạng với ΔIED
b: MI/MD=EI/ED(EM là phân giác)
=>MI*ED=MD*EI
a: Xét ΔDEG vuông tại D và ΔIED vuông tại I có
góc E chung
=>ΔDEG đồng dạng với ΔIED
b: MI/MD=EI/ED(EM là phân giác)
=>MI*ED=MD*EI
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
Cho tam giác ABC vuông tại A, lấy điểm D thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc với AC tại F
a) CM : tam giác BED đồng dạng tam giác BAC
b) CM : DB/DC = FA?FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. CM : tam giác HKA đồng dạng với tam giác HFC
d) CM : DH // BK
cho tam giác nhọn abc. Các đường cao BD, CE cắt nhau tại H. Kẻ BI, CK cùng vuông góc với DE (I, K thuộc DE).
a) Chứng minh: AE.AB = AD. AC
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c)Gọi M là trung điểm BC. Kẻ MI vuông góc ED tại N. Chứng minh NI = NK và EI =DK
d) đường thẳng AD cắt BC tại F. Kẻ FP vuông góc ED tại P. CHứng minh PF là tia phân giác BPC
Cho tam giác ABC là tam giác đều, cạnh dài là 2a. Gọi M là trung điểm của BC. Lấy d thuộc AB và E thuộc AC sao cho DME = 60o. Kẻ MH vuông góc AB tại H, MK vuông góc AC tại K, MI vuông góc DE tại I.
a) Tính Ah, AK theo a
b) Chứng minh : DM là tia phân giác của góc BDE và Em là tia phân giác của góc CED
c) Chứng minh: DI=DH; EI=EK.
d) Tính chu vi tam giác ADE theo a.
cho tam giác abc có 3 góc nhọn đường cao bd và ce cắt nhau tại h. a,cm tam giác abd đồng dạng tam giác ace . b,ch.ce=ccd.ca . c, kẻ ek vuông góc tại k và di vuông góc ec tại i ,cm ah song song ik
cho tam giác abc có 3 góc nhọn đường cao bd và ce cắt nhau tại h. a,cm tam giác abd đồng dạng tam giác ace . b,ch.ce=ccd.ca . c, kẻ ek vuông góc tại k và di vuông góc ec tại i ,cm ah song song ik
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH. Trên tia AB lấy điểm D sao cho AD=AC. Gọi E là giao điểm của AH và CD. Lấy điểm K trên đoạn EC sao cho EK=ED. Qua K kẻ đường vuông góc với BC, cắt AC ở I. CM : AI=AB
Cho tâm giác ABC vuông tại A, đường cao AH,AB<AC. E trung điểm AC. Kẻ EK vuông góc với BC,K thuộc BC
a) CM: tam giác ABC đồng dạng tam giác KEC, 2CK.CB=AC2
b)CM: AB2=BC.BH=BK2-CK2
c)CM; tam giácBAE đồng dạng tam giác AHK và góc ABE = góc AKE
cho tam giác ABC vg tại A có AB = 12cm, BC=20 cm . Kẻ đg phân giác BD ( D thuộc AC ). Gọi H là hình chiếu của C trên đg thẳng BD. a, tính AC,CD,AD b, CM tam giác ABD đòng dag vs tgiac HBC từ đó suy ra BD.HC=AD.BC
c, CM tgiac ABD đồng dag vs tgiac HCD TÍNH diện tích tgiac HCD