Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.
Cho tam giác ABC vuông tại a đường cao AH h thuộc BC biết AB = 15 cm AC = 20 cm .a)tính độ dài đoạn thẳng bc ah.b) kẻ HM vuông góc với AB HN vuông góc với AC chứng minh tam giác ahb đồng dạng với tam giác ACB .C)gọi I là trung điểm của BC k là giao điểm của AE và MN chứng minh AD vuông góc MN tại k.
Cho tam giác ABC vuông tại góc A có B=2C, AB=3cm. Vẽ đường cao AH (H thuộc AB)
a)CM: tam giác HBA đồng dạng với tam giác ABC
b)Kẻ tia phân giác của góc ABC cắt AH tại D cắt AC tại E. CM:AB2=AE.AC
c)CM: tam giác BHD đồng dạng với tam giác BAE rồi suy ra tỉ số diện tích hai tam giác BHD và BAE
Cho tam giác nhọn ABC (AB<AC) có đường cao AH. Tù H kẻ HM vuông góc vớ AB tại M, N vuông góc với AC tại N.
a) CMR ta giác HAB đồng dạng với tam giác MAH
CMR tam giác HAC đồng dạng với tam giác NAH
b) CM AM.AB=AH^2 và AM.AB=AN.AC
c) CM tam giác AMN đồng dạng với tamm giác ACB.
d) Gọi I là giao điểm của AH và MN. CM IA.MH=IM.AN
e) Gọi K là giao điểm của BC. CM AK vuông góc với IN.
Cho tam giác ABC, góc A = 900, AH vuông góc BC, AB = 6cm, AC = 8 cm, phân giác của góc B cắt AH tại I, cắt BC tại D
1. Tính BC, AD, DC
2. CM tam giác ABC đồng dạng với tam giác HBA, tam giác ABI đồng dạng với tam giác CBD
3. CM AB2 = BH . BC, AH2 = HB . HC, \(\dfrac{IH}{IA}\) = \(\dfrac{AD}{BC}\)
Cho tam giác ABC vuông tại A có AB=9 cm,AC = 12 cm tia phân giác góc A cắt BC tại D, từ D kẻ DE vuông góc AC (E thuộc AC)
a,Tính độ dài BD và CD
b, kẻ đường cao AH. Hãy chứng minh tam giác ABH đồng dạng tam giác CDE
Cho tam giác ABC vuông có AC>AB, vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD=AH, Đường vuông góc với BC tại D cắt AC tại E.
a. Cm: tam giác HBA đồng dạng tam giác ABC và AB2=BH.BC
b. Cm: tam giác CDA đồng dạng tam giác CEB và AB= AE
c. Gọi M là trung diểm BE. Cm: góc BMH = Góc BCE
d. Tia AM Cắt BC tại G. Cm: (BG/BC) = HD/(AH+HC)
cho tam giác ABC vuông tại A (AB<AC) ,đường cao AH
a) cm/ tam giác ABC đồng dạng với tam giác HBA ,
b) tính BC, AH biết AB=6cm, AC=8cm
c) phân giác góc ABC cắt AC tại D, kẻ CN vuông góc với BD tại N. cm/ tam giác AND với tam giác BDC đồng dạng
d) gọi M là trung điểm BC. cm/ MN là đường trung trực của đoạn thẳng AC
các bạn giúp mình với. Mịnh cần gấp
Cho tam giác ABC vuông tại A, lấy điểm D thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc với AC tại F
a) CM : tam giác BED đồng dạng tam giác BAC
b) CM : DB/DC = FA?FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. CM : tam giác HKA đồng dạng với tam giác HFC
d) CM : DH // BK