a: Xét ΔNGF có
GP,FM là trung tuyến
GP cắt FM tại O
=>O là trọng tâm
c: Xét ΔNEF có
G,P lần lượt là trung điểm của NE,NF
=>GP là đường trung bình
=>GP=1/2EF
=>GO=1/3EF
a: Xét ΔNGF có
GP,FM là trung tuyến
GP cắt FM tại O
=>O là trọng tâm
c: Xét ΔNEF có
G,P lần lượt là trung điểm của NE,NF
=>GP là đường trung bình
=>GP=1/2EF
=>GO=1/3EF
cho tam giác def.vẽ trung tuyến em.trên tia em lấy 2 điểm g và n sao cho eg=2/3 em và m là trung điểm của gn . Gọi P là trung điểm của NF,GP cắt MF tại O.Chứng minh : a) Lấy I thuộc GI=1/3 GF, chứng minh E,I,P thẳng hàng c) GO=1/3 EF
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
Bài 3 (3,5 điểm)
Cho tam giác ABC có trung tuyến BM và trung tuyến CN cắt nhau tại G. Trên tia GM lấy điểm P sao cho M là trung điểm của GP
1) Chứng minh tam giác AMP bằng tam giác CMG
2) Gọi Q là trung điểm của CG, chứng minh BQ=NP
3) Gọi E là giao điểm của AG với BQ, CE cắt BG tại F, chứng minh GF=GM.
1. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Lấy D và E sao cho M, N lần lượt là trung điểm của CD và BE
a, Chứng minh AD = AE
b, Chứng minh A, D, E thẳng hàng
2. Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia AM lấy D sao cho M là trung điểm của AD. Nối B với D, C với D
a, Chứng minh AC = BD. AC // BD
b, Cho góc BAC = 90o. Tính góc BDC
3. Cho tam giác DEF có M là trung điểm của EF. Trên tia đối của tia MD lấy điểm I sao cho MI = MD
a, Chứng minh DE = IF, DE // IF
b, Vẽ DH vuông góc với EF ( H thuộc EF) trên tia đối của tia HD lấy điểm G sao cho HG = HD. Chứng minh EG = IF
Bạn nào làm nhanh nhất mà đúng là mình tick cho nha
Tam giác ABC có đường trung tuyến AM, trọng tâm G, trên tia đối của tia MA lấy 2 điểm I và K sao cho M là trung điểm của IG , I là trung điểm của KG,Gọi N là TĐ của CK
a) chứng minh I là trọng tâm của tam giác KBC
b)3 điểm BIN thẳng hàng
Toán lớp 7 anh em giúp mình chứng minh mai mình phải nộp bài rùi à ~ Giúp nhé
Câu 1 : Cho tam giác ABC có 2 đường trung tuyến AD,BE cắt nhau tại G. Trên tia đối của tia DG lấy điểm M sao cho D là trung điểm của đoạn thẳng MG. Trên tia đối của tia EG lấy điểm N sao cho E là trung điểm GN, c/m:
a)GN=GB,GM=GA
b)AN=MB và AN// MB
Câu 2 : Cho tam giác ABC. Trên cạnh BC lấy điểm M sao cho BM=2CM. Vẽ điểm D sao cho C là trung điểm của BD. C/m
a)M là trọng tâm tam giác ABD
b)3 điểm A,M,N thẳng hàng
c) Đường thẳng DM đi qua trung điểm của AB
Bài 7: Cho tam giác DEF cân tại D, DI là phân giác của EDF (I thuộc EF). Gọi N là trung điểm của
IF. Vẽ điểm M sao cho N là trung điểm của DM. Chứng minh rằng:
1) ADIN = AMFN và MF 1 EF.
2) Cho DE = 8cm, EF = 12cm. Tính độ dài đoạn thẳng FM.
3) DF > MF và IDN > NDF.
4) Gọi K là trung điểm của ME. Chứng minh D, I, K thẳng hàng
1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD
a) Chứng minh tam giác OAD = tam giác OCB
b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB
c) Chứng minh rằng OM là tia phân giác của góc xOy
2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh tam giác ABM = tam giác ACM
b) Chứng minh AM vuông góc với BC.
c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB
d) Chứng minh EF = BC
3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B
a) Chứng minh rằng: EA = EC và EB = ED
b) Chứng minh rằng: C, E, B thẳng hàng
c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN
4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng
a) Tam giác DBC = tam giác DAM
b) AM//BC
c) M, A, N thẳng hàng