\(a,\) Áp dụng Pytago, ta có \(EF=\sqrt{DE^2+DF^2}=20\left(cm\right)\)
Vì DN là trung tuyến ứng với cạnh huyền EF nên \(DN=\dfrac{1}{2}EF=10\left(cm\right)\)
\(a,\) Áp dụng Pytago, ta có \(EF=\sqrt{DE^2+DF^2}=20\left(cm\right)\)
Vì DN là trung tuyến ứng với cạnh huyền EF nên \(DN=\dfrac{1}{2}EF=10\left(cm\right)\)
Bài 1. Cho tam giác DEF vuông tại D có DE=16cm, DF=12cm. Gọi M, N, P theo thứ tự là trung điểm của DE, EF, DF.
a) Chứng minh NP//DE và tính DN.
b) Chứng minh DN = PM.
c) Gọi H đối xứng N qua P. Tứ giác DHFN là hình gì? Vì sao?
d) Gọi O là giao điểm của MP và DN. Tia eO cắt MN tại G. Tia DG cắt cạnh EF của tam giác DEF tại K. Chúng minh MP=2.MK.
HÌNH HỌC
Bài 1 Cho Δ DEF vuông tại D . Gọi M, N theo thứ tự là trung điểm của DE và DF.
a) Chứng minh tứ giác MNFE là hình thang.
b) Gọi G là trung điểm của EF. Chứng minh tứ giác MNGE là hình bình hành.
Cho Δ DEF vuông tại D. Gọi M, N theo thứ tự là trung điểm của DE và DF.
a/ Chứng minh tứ giác MNFE là hình thang.
b/ Gọi G là trung điểm của EF. Chứng minh tứ giác MNGE là hình bình hành.
c/ Tứ giác DMGN là hình gì ? Vì sao?
d/ Gọi P là điểm đối xứng của G qua M, Q là điểm đối xứng của G qua N. Chứng minh : P và Q đối xứng nhau qua D
) Cho tam giác DEF vuông tại D, trung tuyến DM.
a) Cho DE = 3cm, DF = 4cm. Tính EF, DM.
b) Gọi N là điểm đối xứng của D qua M. Chứng minh tứ giác DENF là hình chữ nhật.
c) Gọi A, B lần lượt là trung điểm của DE và NF. Chứng minh 3 điểm A, M, B thẳng hàng.
Câu 1: Cho tam giác DEF vuông tại D có DE = 12cm, DF = 9cm, DM là đường trung tuyến (M thuộc EF). a) Tính EF, DM. b) Gọi N và K lần lượt là chân các đường vuông góc hạ từ M xuống DE và DF. Tứ giác DNMK là hình gì? Vì sao? c) Gọi H là điểm đối xứng với M qua N, O là trung điểm của MD. Chứng minh rằng ba điểm H, O, F thẳng hàng rồi.
Cho tam giác DEF vuông tại D, gọi I là trung điểm của EF. Biết DE = 12cm, DF = 16cm
a) Tính DI ?
b) Vẽ IK vuông góc DE tại K. Tính IK ?
cho tam giác DEF vuông tại D có DE=5cm DF=12cm. Gọi M là trung điểm của EF hãy tính độ dài cạnh EF rồi tính DM
Giúp giùm mình với :((
Bài 3. Cho tam giác DEF vuông tại D. Gọi A là trung điểm của EF, H là điểm đối xứng với A qua DF. Kẻ AC DE tại C, gọi B là giao điểm của AH và DF.
a/ Vẽ hình, viết GT – KL của bài toán.
b/ Tứ giác DCAB là hình gì ? Vì sao?
c/ Chứng minh tứ giác DAFH là hình thoi.
d/ Tam giác DEF có điều kiện gì thì tứ giác DCAB là hình vuông ?