Lời giải:
$EF=\sqrt{ED^2+DF^2}=\sqrt{5^2+12^2}=13$ (cm) theo định lý Pitago
$\sin E=\frac{DF}{EF}=\frac{12}{13}$
$\cos E=\frac{ED}{EF}=\frac{5}{13}$
$\tan E=\frac{DF}{ED}=\frac{12}{5}$
$\cot E=\frac{1}{\tan E}=\frac{5}{12}$
Vì $\widehat{E}, \widehat{F}$ là 2 góc phụ nhau nên:
$\sin F=\cos E=\frac{5}{13}$
$\cos F=\sin E=\frac{12}{13}$
$\tan F=\cot E=\frac{5}{12}$
$\cot F=\tan E=\frac{12}{5}$