Ta sẽ chứng minh ΔOBC có hai góc OBC và OCB bằng nhau
ΔABQ và ΔACP có: AB = AC, AQ = AP, ∠A chung
⇒ ΔABQ = ΔACP (c.g.c)
⇒ ∠ABQ = ∠ACP.
Mà ∠ABC = ∠ACB (Vì tam giác ABC cân tại A)
⇒ ∠ABC - ∠ABQ = ∠ACB - ∠ACP hay ∠OBC = ∠OCB
⇒ ΔOBC cân tại O.
Ta sẽ chứng minh ΔOBC có hai góc OBC và OCB bằng nhau
ΔABQ và ΔACP có: AB = AC, AQ = AP, ∠A chung
⇒ ΔABQ = ΔACP (c.g.c)
⇒ ∠ABQ = ∠ACP.
Mà ∠ABC = ∠ACB (Vì tam giác ABC cân tại A)
⇒ ∠ABC - ∠ABQ = ∠ACB - ∠ACP hay ∠OBC = ∠OCB
⇒ ΔOBC cân tại O.
Cho tam giác cân ABC, AB = AC. Trên các cạnh AB, AC lần lượt lấy hai điểm P, Q sao cho AP = AQ. Hai đoạn thẳng CP, BQ cắt nhau tại O. Chứng minh rằng: Điểm O cách đều hai cạnh AB, AC.
Cho tam giác cân ABC, AB=AC. Trên các cạnh AB, AC lần luợt lấy hai điểm P, Q sao cho Ap=AQ. Hai đoạn thẳng CP, BQ cắt nhau tại O. Chứng minh rằng:
a) Tam giác OBC là tam giác cân.
b) Điểm O cách đều hai cạnh AB, AC.
c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó.
Cho tam giác cân ABC, AB=AC. Trên các cạnh AB, AC lần luợt lấy hai điểm P, Q sao cho Ap=AQ. Hai đoạn thẳng CP, BQ cắt nhau tại O. Chứng minh rằng:
a) Tam giác OBC là tam giác cân.
b) Điểm O cách đều hai cạnh AB, AC.
c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó.
Cho tam giác cân ABC, AB = AC. Trên các cạnh AB, AC lần lượt lấy hai điểm P, Q sao cho AP = AQ. Hai đoạn thẳng CP, BQ cắt nhau tại O. Chứng minh rằng: AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó.
cho tam giác ABC cân tại A. Trên các cạnh AB,AC lần lượt lấy 2 điểm P,Q sao choAP=AQ. Hai đoạn thẳng CP,BQ cắt nhau tại điểm O. C/m tam giác AOB là tam giác cân.
Làm phiền các bạn wa
Cho tam giác ABC cân tại A. Trên các cạnh AB, AC lần lượt lấy hai điểm P, Q sao cho AP = AQ. Hai đoạn CP, BQ cắt nhau tại O.
Chứng minh rằng: O cách đều AB và AC. Giúp đỡ tui nhé các bạn
Cho tam giác ABC cân tại A. Trên cạnh AB và AC lần lượt lấy hai điểm P và Q sao cho AP = AQ. Gọi O là giao điểm của CP và BQ. Khi đó
A. OB = OC
B. O cách đều hai cạnh AB và AC
C. Tam giác OBC là tam giác cân
D. Cả A, B, C đều đúng
Cho tam giác ABC cân tại A. CP, BQ là các tia phân giác trong của tam giác ABC (P thuộc AB, Q thuộc AC). Gọi O là giao điểm của CP và BQ.
a) Chứng minh tam giác OBC là tam giác cân.
b) Chứng minh điểm O cách đều ba cạnh của tam giác ABC.
c) Chứng minh đường thẳng AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó.
d) Chứng minh CP = BQ.
e) Tam giác APQ là tam giác gì? Vì sao?
Trong tam giác ABC cân tại A.Trên cạnh AB,AC lần lượt lấy 2 điểm P,Q sao cho AP = AQ.Hai đoạn CP ,BQ cắt nhau tại O.Giao điểm của AO và BC là H
Tính góc AHC = ?????