Cho tam giác AOB vuông tại O, có O A B ^ = 30 0 và AB = a. Quay tam giác AOB quanh trục AO ta được một hình nón. Tính diện tích xung quanh S x q của hình nón đó.
A. S x q = πa 2 2
B. S x q = πa 2
C. S x q = πa 2 4
D. S x q = 2 πa 2
Cho tam giác OAB vuông tại O, OA=OB= 4. Lấy một điểm M thuộc cạnh AB và gọi H là hình chiếu của M trên OA. Thể tích của khối tròn xoay được tạo thành khi quay tam giác OMH quanh OA có thể tích lớn nhất bằng
A. 256 π 81
B. 81 π 256
C. 128 π 81
D. 8 π 3
Gọi (H) là khối tròn xoay tạo thành khi quay hình quạt OAB (hình vẽ bên) quanh đường thẳng d đi qua O và vuông góc với AB. Biết OA=OB=2 góc AOB= 60 o Thể tích V của khối tròn xoay (H) gần với giá trị nào sau đây nhất ?
A. 1,75
B. 2,25
C. 1,55
D. 3,15
Cho tam giác vuông cân cân ABC tại A, BC= a 2 Quay tam giác quanh đường cao AH ta được hình nón tròn xoay. Thể tích khối nón bằng




Cho tam giác SOA vuông tại O có OA = 3 cm, SA = 5cm quay tam giác SOA xung quanh cạnh SO được hình nón. Thể tích của khối nón tương ứng là
A. 12 π ( cm 3 )
B. 15 π ( cm 3 )
C. 80 3 π ( cm 3 )
D. 36 π ( cm 3 )
Cho tam giác ABC cân tại A, có cạnh A B = a 5 , B C = 2 a Gọi M là trung điểm của BC. Khi tam giác quay quanh trục MA ta được một hình nón và khối nón tạo bởi hình nón đó có thể tích là

![]()

![]()
Cho tam giác ABC nội tiếp trong đường tròn tâm O, bán kính R có B A C = 75 o A C B = 60 O Kẻ BH ⊥ AC Quay tam giác ABC quanh trục AC thì △ BHC tạo thành hình nón xoay có diện tích xung quanh bằng?




Cho tam giác ABC vuông tại B có AC=2a, BC=a khi quay tam giác ABC quay quanh cạnh góc vuông AB thì đường gấp khúc ABC tạo thành một hình nón tròn xoay có diện tích xung quanh bằng
![]()
![]()
![]()
![]()
Cho tam giác ABC vuông tại A, AB=a, BC= 2a. Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục BC.

![]()
![]()
![]()