Cho tam giác ABC nội tiếp trong đường tròn tâm O, bán kính R có B A C = 75 o A C B = 60 O Kẻ BH ⊥ AC Quay tam giác ABC quanh trục AC thì △ BHC tạo thành hình nón xoay có diện tích xung quanh bằng?




Cho tam giác ABC vuông cân tại B, cạnh AB = 2. Quay đường gấp khúc ACB quanh cạnh AB ta được hình nón. Tính diện tích xung quang của hình nón đó.
A . 8 π 2
B . 4 π 2
C . 4 π 3
D . 2 π 2
Trong không gian cho tam giác ABC vuông tại A có AB = 2a và BC = 2a. Quay tam giác ABC xung quanh cạnh AB ta thu được khối nón có thể tích bằng
A . πa 3
B . 3 π a 3
C . 3 3 πa 3
D . 2 3 πa 3
Cho tam giác ABC nội tiếp trong đường tròn tâm O, bán kính R có B A C ^ = 75 0 , A C B ^ = 60 0 . Kẻ BH ⊥ AC. Quay quanh AC thì ∆ BHC tạo thành hình nón tròn xoay (N). Tính diện tích xung quanh của hình nón xoay (N) theo R.
A. 3 + 2 2 2 πR 2
B. 3 + 2 3 2 πR 2
C. 3 ( 1 + 2 ) 4 πR 2
D. 3 ( 1 + 3 ) 4 πR 2
Cho tứ diện ABCD có AD ⊥ (ABC), ABC là tam giác vuông tại B. Biết
BC=A, AB=a 3 , AD=3a Quay các tam giác ABC và ABD xung quanh đường thẳng AB ta được 2 khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng




Cho tam giác vuông cân cân ABC tại A, BC= a 2 Quay tam giác quanh đường cao AH ta được hình nón tròn xoay. Thể tích khối nón bằng




Trong không gian cho tam giác ABC vuông tại A có AB = a, AC = a 3 . Tính độ dài đường sinh l của hình nón nhận được khi quay tam giác ABC xung quanh trục AB.
A. l = a 3
B. l= a 2
C. l = ( 1 + 3 ) a
D. l = 2a
Cho tam giác ABC cân tại A, có cạnh A B = a 5 , B C = 2 a Gọi M là trung điểm của BC. Khi tam giác quay quanh trục MA ta được một hình nón và khối nón tạo bởi hình nón đó có thể tích là

![]()

![]()
Cho tam giác ABC vuông tại A, AB=a, BC= 2a. Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục BC.

![]()
![]()
![]()