Xét tứ giác CKNH có
\(\widehat{CKN}+\widehat{CHN}=180^0\)
Do đó: CKNH là tứ giác nội tiếp
Xét tứ giác CKNH có
\(\widehat{CKN}+\widehat{CHN}=180^0\)
Do đó: CKNH là tứ giác nội tiếp
cho tam giác ABC có ba góc nhọn. Kẻ đường cao BK, CM của tam giác ABC, chúng cắt nhau tại điểm H. Chứng minh rằng tứ giác BMKC là tứ giác nội tiếp
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O , R ) . Các đường cao BK và CD cắt nhau tại H . Nối D với K
a) Tìm các tứ giác nội tiếp trong hình
b) Kẻ tiếp tuyến Ax với ( O ) . Chứng minh Ax song song với DK
c) Kẻ AH cắt BC tại M . Chứng minh KB là tia phân giác của góc DKM
d) Kẻ AO cắt đường tròn tại điểm F . Chứng minh BF là hình bình hành
e) Biết AH = 6 , BC = 8 . Tìm R
Cho tam giác ABC có ba góc nhọn. Các đường cao AH và BK cắt nhau tại I.
a/ Chứng minh rằng tứ giác CHIK nội tiếp.
b/ ABHK nội tiếp. Xác định tâm của đường tròn đi qua các điểm A, B, H,K.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R), có các đường cao AI, BK cắt nhau tại H. Hơn nữa, AI, BK cắt đường tròn (O) tương ứng D và E
a) Chứng minh tứ giác AKIB nội tiếp
b) Chứng minh : BHD là tam giác cân
Cho tam giác ABC có ba góc nhọn nội tiếp (O,R). Hai đường cao AN và BM của tam giác ABC cắt nhau tại I
a Chứng minh tứ giác IMCN nội tiếp được một đường tròn
b chứng minh IA.IN=IM.IB
c tia BM cắt (O) tại H Chứng minh AI=AH
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Hai đường cao AN và BM của tam giác ABC cắt nhau tại I a) Chứng minh tứ giác IMCN nội tiêpa một đường tròn b) Chứng minh: IA.IN=IB.IM c) Tia BM cắt (O) tại H. Chứng minh AI = AH
cho△ABC có ba góc nhọn nội tiếp đường tròn tâm O , bán kính R. Hạ các đường cao AH,BK của tam giác . các tia AH,BK lần lượt cắt (O) tại các điểm thứ hai là D;E.
a)Chứng minh tứ giác AKHB nội tiếp một đường tròn. Xác định tâm của đường tròn đó
b)chứng minh rằng :HK song song với DE
1.Cho tam giác ABC nhọn. Kẻ các đường cao BD, CE cắt nhau tại H. Chứng mình rằng: a,AEHD là tứ giác nội tiếp b,BEDC là tứ giác nội tiếp. Tìm tâm đường tròn ngoại tiếp c, Góc EBD=ECD d,AH vuông góc với BC
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao BM và CN cát nhau tại I. Chứng minh rằng: a,AMIN là một tứ giác nội tiếp b, Góc NAI=NMI c,AI cắt BC tại H. Chứng minh HA là tia phân giác của góc NHM
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tứ giác AEFC nội tiếp đường tròn
b) Kẻ đường kính AK của đường tròn(O). Chứng minh tam giác ABK đồng dạng tam giác AFC
c) Kẻ FM song song với BK (M thuộc AK). Chứng minh CM vuông góc với AK