Cho tam giác ABC.Trên AB lấy E ,trên AC lấy F sao cho EF//BC.CMR:\(S_{CEF}\le\frac{1}{4}S_{ABC}\)
Cho tam giác ABC.Gọi D là trung điểm của cạnh BC. Trên hai cạnh AB và AC lần lượt lấy 2 điểm E và F.Chứng minh rằng \(S_{DÈF}\le\frac{1}{2}S_{ABC}\).Với vị trí nào của 2 điểm E và F thì \(S_{DEF}\)đạt giá trị lớn nhất
Bài 1: Cho tứ giác ABCD. Trên AB, CD lần lượt lấy M, N, P, Q sao cho AM= MN= NB, CP= PQ= QD. Chứng minh rằng \(S_{MNPQ}=\frac{1}{3}S_{ABCD}.\)
Bài 2: Cho tam giác ABC. Trên một nửa mặt phẳng bờ BC chứa A, dựng các hình bình hành BCEF, ACKL, ABMN sao cho E, F lần lượt nằm trên KL, MN. Chứng minh rằng \(S_{BCEF}=S_{ACKL}+S_{ABMN}.\)
Bài 3: Cho tứ giác ABCD. P là điểm bất kì nằm trong tứ giác ABCD sao cho \(S_{APB}+S_{CPD}=\frac{1}{2}S_{ABCD}.\)Gọi M,N lần lượt là trung điểm AC, BD. Chứng minh rằng P, M, N thẳng hàng.
Giúp mình với! Mình cần gấp.
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .
1) C/m M, N lần lượt là trung điểm của AD và BC.
2) tứ giác EFQP là hình gì ?
3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm
4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.
2) AM = MN = NC .
3) 2EN = DM + BC .
4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.
1) C/m E ,F ,I thẳng hàng .
2) tính \(S_{ABCD}\)
3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính EF≤ AB+CD / 2
3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2
Cho tứ giác ABCD. Lấy M,N∈AB sao cho AM=MN=NB. Lấy E,F∈BC sao cho BE=EF=FC. Lấy P,Q∈CD sao cho CP=PQ=QD. Lấy G,H∈AD sao cho DG=GH=HA. Gọi A',B' là giao điểm của MQ và NP với EH, C',D' là giao điểm của MQ và NP với FG. Chứng minh rằng
a/\(S_{MNPQ}=\frac{1}{3}S_{ABCD}\)
b/ \(S_{A'B'C'D'}=\frac{1}{9}S_{ABCD}\)
Cho tam giác ABC, trên hai cạnh AB, AC lấy hai điểm D và E sao cho
BD = CE. Gọi M là trung điểm DE. Trên tia đối của tia MB lấy điểm F sao cho MF = MB
a, Chứng minh tam giác MDB = tam giác MEF
b, Chứng minh tam giác CEF cân
c, Kẻ phân giác AK của góc BAC. Chứng minh AK // CF
B19
Cho tam giác ABC, trên hai cạnh AB, AC lấy hai điểm D và E sao cho
BD = CE. Gọi M là trung điểm DE. Trên tia đối của tia MB lấy điểm F sao cho MF = MB
a, Chứng minh tam giác MDB = tam giác MEF
b, Chứng minh tam giác CEF cân
c, Kẻ phân giác AK của góc BAC. Chứng minh AK // CF
cho tam giác ABC có AB<AC, trên AC lấy K sao cho CK=AB, gọi trung điểm AK là E, trung điểm BC là F. Tính CEF theo BAC
2. Cho tam giác ABC đều, cạnh a. Trên tia đối của tia AB, CA, BC lần lượt lấy D, E, F sao cho AD = \(\frac{1}{2}\)AB , CE = \(\frac{1}{2}\)AC, BF = \(\frac{1}{2}\)BC.
a) Tính SABC
b) Chứng minh tam giác DEF đều
c) Tính tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)