cho tam giác abc vuộng tại a có bd là phân giác , kẻ de vuông góc với bc (e thuộc bc ) . gọi f là giao điểm của ab với de . chứng minh :
a, bd là đường trung trực của ae
b, df=dc
c, ad<dc
cho tam giác vuông tại B, vẽ đường phân giác AD (D thuộc BC ). Từ D kẻ DE vuông góc AC ( E thuộc AC )
a) Chứng minh: AD là đường trung trực của BE
b) Gọi F là giao điểm của tia DE và AB. Chứng minh tam giác ADF = Tam giác ADC
c) Chứng minh: BA + BC>DE+AC
cho tam giác abc vuông tại a kẻ phân giác BD kẻ DE vuông với BC( E thuộc BC) cho AB cắt DE tại F a,chứng minh BD là trung trực của AE b,chứng minh DF=DCc, chứng minh AD
Bài 14. Cho tam giác ABC vuông tại A, phân giác BD, kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy F sao cho AF — CE. CMR:
a) AABD AEBD
b) BD là đường trung trực của AE
c) AD < DC.
d) E, D, F thẳng hàng và BD LCF.
e) 2(AD+AF) > CF.
Cho tam giác ABC cân tại A, đường phân giác BD, kẻ DE vuông góc với BC tại E (E thuộc BC).
a) c/m Tam giác DEB đồng dạng với tam giác DAB
b) c/m DE là đường trung trực của đoạn AE
Cho tam giác ABC vuông tại A, BD là phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE
a/ Chứng minh DE vuông góc với BE
b/ Chứng minh BD là đường trung trực của AE
c/ Kẻ AH vuông góc với BC. So sánh EH và HC
Cho tam giác ABC vuông tại A (AB<AC) Đường phân giác BD trên BC lấy E sao cho BE = AB a, chứng mình tam giác ADB = tam giác EDB b, tia ED cắt tia BA tại F chứng minh BC = BF c, chứng minh AE vuông góc với BD
Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại D, kẻ DE vuông góc với BC(E thuộc BC) , gọi F là giao điểm của BA và tia ED.
A) tam giác ABD= tam giác EBD
B)tam giác DFC cân
C) Gọi H là giao điểm của BD và CF. Trên tia đối của tia DF lấy điểm K sao cho DK=DF.Vẽ điểm I nằm trên đoạn thẳng CD sao cho CI=2DI.Chứng minh DH vuông góc với CF và ba điểm K,I,H thẳng hàng
Cho hình thang ABCD (AB//CD). Gọi E, F, K lần lượt là trung điểm của BD, AC, DC. Gọi H là giao điểm của đường thẳng E đi qua E vuông góc với AD và đường thẳng F vuông góc với BC. Chứng minh a)H là trực tâm tam giác EFK b) Tam giác HCD cân