Do ADM = AEM = DAE = 90o nên ADME là hình chữ nhật
=> DE = AM
DE nhỏ nhất <=> AM nhỏ nhất <=> AM vuông góc với BC
=> vị trí của M : M là chân đường cao hạ từ A.
Do ADM = AEM = DAE = 90o nên ADME là hình chữ nhật
=> DE = AM
DE nhỏ nhất <=> AM nhỏ nhất <=> AM vuông góc với BC
=> vị trí của M : M là chân đường cao hạ từ A.
Cho tam giác ABC vuông tại A và một điểm M trên BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC. Tìm vị trí điểm M trên BC để DE có độ dài nhỏ nhất.
Cho tam giác ABC vuông tại A; M là một điểm trên cạnh BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC. Xác định vị trí của điểm M sao cho tích MD.ME lớn nhất.
cho tam giác abc vuông tại a. m là điểm bất kỳ trên bc. gọi d,e lần lượt là điểm đối xứng với m qua ab, ac. tìm vị trí của điểm m trên bc để de nhỏ nhất
Cho tam giác ABC vuông cân ở A, M là một điểm bất kỳ thuộc cạnh huyền BC. Gọi D và E theo thứ tự là hình chiếu của M trên AB và AC.
a) Chứng minh: khi M thay đổi trên BC thì chu vi ADME không đổi
b) Điểm M ở vị trí nào trên BC thì DE có độ dài nhỏ nhất?
Cho tam giác ABC vuông tại A, điểm M bất kì trên cạnh huyền BC. Gọi D, E lần lượt là hình chiếu của M lên AB, AC
a,CMR tứ giác ADME là HCN
b,Kẻ đường cao AH của tam giác ABC. CMR góc DHE vuông
c,Tìm vị trí điểm M để đoạn thẳng DE có độ dài ngắn nhất
1. Cho tam giác ABC. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho
BD = CE. Gọi I, K, M, N theo thứ tự là trung điểm của BE, CD, BC, DE.
a. Tứ giác MINK là hình gì? Vì sao?
b. Chứng minh rằng IK vuông góc với tia phân giác At của góc A.
2. Cho tam giác đều ABC. Từ một điểm M trên cạnh AB vẽ hai đường thẳng
song song với hai cạnh AC, BC, chúng lần lượt cắt BC, AC tại D và E. Tìm vị trí của
M trên cạnh AB để độ dài đoạn DE đạt giá trị nhỏ nhất.
cho tam giác ABC vuông ở A .M là một điểm thuộc cạnh BC . Gọi D,E lần lượt là các hình chiếu của M lên AB và AC
â) so sánh AM và DE
b)Gọi I là trung điểm của DE .Khi điểm M di động trên BC thì điểm I di động trên đường nào
c) tìm vị trí của điểm M trên BC để DE ngắn nhất
AI TRẢ LỜI NHANH VÀ ĐÚNG MÌNH TICK NHA
Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC. GỌi D,E theo thứ tự là chân đường vuông góc kẻ từ M đến AB, AC. Tìm vị trí của điểm M trên cạnh BC để DE có độ dài nhỏ nhất
Cho tam giác đều ABC. Từ một điểm M trên cạnh AB vẽ hai đường thẳng song song với hai cạnh AC, BC, chúng lần lượt cắt BC, AC tại D và E. Tìm vị trí của M trên cạnh AB để độ dài đoạn DE đạt giá trị nhỏ nhất.
Bài 3 : Cho tam giác ABC vuông tại A có AB = AC = a . Điểm M chuyển động trên
cạnh BC , gọi D và E thứ tự là hình chiếu của M trên AB và AC .
a)Tìm vị trí của M để S ADME đạt giá trị lớn nhất tính giá trị lớn nhất đó theo a .
b) Tìm vị trí của M để DE đạt giá trị nhỏ nhất tính giá trị nhỏ nhất đó theo a .