tự vẽ hình:)
a,
Xét Δ MBA và ΔMCD, có :
MA = MD (gt)
MB = MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{CMD}\) (đối đỉnh)
=> Δ MBA = Δ MCD (c.g.c)
=> AB = CD
Ta có : \(\widehat{MBA}=\widehat{MCD}\) (Δ MBA = Δ MCD)
=> AB // CD (sole - trong)
b,
Ta có :
AB // CD (cmt)
Mà BA ⊥ AC
=> CD ⊥ AC
Xét Δ ABC và Δ CDA, có :
AB = CD (gt)
\(\widehat{BAC}=\widehat{DCA}=90^o\)
\(\widehat{CBA}=\widehat{ADC}\) (Δ MBA = Δ MCD)
=> Δ ABC = Δ CDA (g.c.g)
sai mong a thông cảm nha a:")
c,
Ta có :
Δ ABC vuông A
AM là đường trung tuyến
=> AM = BM = MC
Ta có :
BM + MC = BC
Mà BM = MC
=> BM = MC = \(\dfrac{1}{2}BC\)
Ta có : AM = BM = MC (cmt)
=> AM = \(\dfrac{1}{2}BC\)