Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD.
a) Chứng minh tam giác ABC = tam giác ADC.
b) Từ A kẻ vuông góc với BC tại K, kẻ AH vuông góc với DC tại H, chứng minh AH = AK.
c) Kéo dài KA cắt tia CD tại M, kéo dài HA cắt tia CB tại N. Gọi I là trung điểm của MN, chứng minh C, A, I thẳng hàng.
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD
=>ΔABC=ΔADC
b: ΔABC=ΔADC
=>góc DCA=góc BCA
Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
góc HCA=góc KCA
=>ΔCHA=ΔCKA
=>AH=AK
c: Xét ΔHAM vuông tại H và ΔKAN vuông tại K có
AH=AK
góc HAM=góc KAN
=>ΔHAM=ΔKAN
=>AM=AN và HM=KN
CH+HM=CM
CK+KN=CN
mà CH=CK và HM=KN
nên CM=CN
CM=CN
AM=AN
=>CA là trung trực của MN
=>C,A,I thẳng hàng