Tham Khảo:
a) Xét ΔABC và ΔMNC, ta có:
BC=NC (gt)
ˆBAC=ˆNCM (đối đỉnh)
AC=CM (gt)
⇒ΔABC=ΔMNC (c-g-c)
b) Vì ΔABC=ΔMNC nên ˆBAC=ˆCMN=900 ( 2 góc tương ứng)
hay AM⊥MN
c) Ta có: A,C,M thẳng hàng nên ˆACE+ˆECM=1800 (kề bù)
mà ˆACE=ˆOCM ( đối đỉnh)
⇒ˆOCM+ˆECM=1800
⇒ ba điểm E,C,O thẳng hàng
hay CE đi qua trung điểm của đoạn thẳng MN
từ đề suy ra được : MN//AB
Áp dụng theo đl ta-lét thì:
\(\dfrac{MN}{AB}=\dfrac{NC}{CA}\)
mà CN=CA suy ra:
\(\dfrac{CN}{CA}=1\)
\(mà\dfrac{MN}{AB}=\dfrac{CN}{CA};\Rightarrow\dfrac{MN}{AB}=1\)
<=> MN = AB hay AB = NM( đpcm)