góc IAB+góc IHB=180 độ
=>IABH nội tiếp
góc IAB+góc IHB=180 độ
=>IABH nội tiếp
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O , trên cung nhỏ BC lấy điểm M sao cho MB lớn hơn MC.Kẻ MI vuông góc với AB tại I , MH vuông góc với BC tại H
a,chứng minh tứ giác BIHM nội tiếp
b,gọi K là giao điểm của IH và AC . chứng minh : góc MIK bằng góc MAK và MK vuông góc với AC
c,tìm vị trí của M trên cung nhỏ BC để IK đạt giá trị lớn nhất
Cho tam giác ABC nhọn nội tiếp (O). I là điểm thay đổi trên BC. Qua I, kẻ IH vuông góc AB tại H, IK vuông góc AC tại K.
a) CM AHIC nội tiếp.
b) M là giao điểm của AI với (O). CM: góc MBC=góc IHK.
c) TÍnh số đo góc AIC khi tứ giác BHKC nội tiếp
Cho tam giác ABC vuông can đỉnh A, M là trung điểm của cạnh BC, I là điểm bất kì thuộc cạnh BC . Kẻ IH vuông góc với AB ( H thuộc AB) , IK vuông góc với AC ( K thuộc AC) . Chung minh : tam giác MHK vuông cân
Cho tam giác ABC đều ,có đường cao AH (H thuộc BC ).Trên cạnh BC lấy điểm M bất kỳ ( M không trùng với B,C,H ) ; gọi P,Q lần lượt là hình chiếu vuông góc của M lên các cạnh AB,AC .
a) CM tứ giác APMQ nội tiếp một đường tròn
b) chứng minh MP +MQ = AH
c) gọi O là tâm đường tròn ngoại tiếp tứ giác APMQ . chứng minh OH vuông góc với PQ ?
Cho tam giác ABC vuông cân tại A, điểm M bất kì trên cạnh AC(C,M không trùng với A,C).Đường thẳng qua C vuông góc với đường thẳng BM tại H cắt tia đối của tia BA tại I. Gọi K là giaoo điểm của IM,BC
CMR a) Tứ giác BKHI nội tiếp
b) BM=CI
c) Khi điểm M chuyển động trên cạnh AC, M không trùng với AC thì điểm H luôn thuộc 1 cung tròn cố định
Cho tam giác ABC có đường cao AH .Trên cạnh BC lấy điểm M bất kì ( M không trùng với B ,C ,H ) từ M kẻ MP và MQ vuông góc với các cạnh AB ,AC
1.Chứng minh APMQ là tứ giác nội tiếp và hãy xác định tâm O của đường tròn ngoại tiếp tứ giác đó .
2.Chứng minh rằng MP+MQ=AH .
3.Chứng minh OH vuông góc với PQ.
Cho tam giác ABC đểu đường cao AH. Trên cạnh BC lấy điểm M bất kì (M không trùng B,C,H). Từ M kẻ MP, MQ lần lượt vuông gióc với AB,AC(P thuộc AB,Q thuộc AC)
1, Chứng minh APMQ nội tiếp
2, Gọi O là tâm đường tròn ngoại tiếp tứ giác APMQ. Chứng minh OH vuông góc với PQ
3, Chứng minh MP+MQ=AH
Cho tam giác ABC có ba góc nhọn nội tiếp (O), M là điểm thuộc cung nhỏ AC. Vẽ MH vuông góc với BC tại H, MI vuông góc AC tại I
a, Chứng minh I H M ^ = I C M ^
b, Đường thẳng HI cắt đường thẳng AB tại K. Chứng minh MK vuông góc vói BK
c, Chứng minh tam giác MIH đồng dạng vói tam giác MAB
d, Gọi E là trung điểm của IH và F là trung điểm AB. Chứng minh tứ giác KMEF nội tiếp từ đó suy ra ME vuông góc vói EF
bài 11: Cho đường tròn (O), BC là dây bất kì (BC<2R). Kẻ các tiếp tuyến với đường tròn (O) tại B av2 C chúng cắt nhau tại A. Trên cung nhỏ BC lấy một điểm M rồi kẻ các đường M rồi kẻ các đường vuông góc MI, MH, MK xuống các cạnh tương ứng BC, AC,AB. Gọi giao điểm của BM, IK là P; giao điểm của CM, IH là Q a) chứng minh: tam giác ABC cân b) chứng minh: các tứ giác BIMK, CIMH nội tiếp c) chứng minh: MI^2=MH.MK d) chứng minh: PQ⊥MI