c. Xét ∆ADF và ∆EDC có:
AD = DE
∠(ADF) = ∠(EDC) (hai góc đối đỉnh)
⇒ ∆ADF = ∆EDC ( cạnh góc vuông – góc nhọn kề)(1 điểm)
⇒ DF = DC (hai cạnh tương ứng) (0.5 điểm)
c. Xét ∆ADF và ∆EDC có:
AD = DE
∠(ADF) = ∠(EDC) (hai góc đối đỉnh)
⇒ ∆ADF = ∆EDC ( cạnh góc vuông – góc nhọn kề)(1 điểm)
⇒ DF = DC (hai cạnh tương ứng) (0.5 điểm)
Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
d. AD < DC
Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
a. ∆ABD = ∆EBD
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng: DF = DC
Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
b. BD là đường trung trực của AE
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B (D thuộc AC). Kẻ DE vuông góc với BC(E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh:
a. Tam giác ABD = tam giác EBD
b. DF = DC
c. AD < DC
Cho tam giác ABC vuông tại A, kẻ phân giác BD (D thộc AC), kẻ DE vuông góc với BC tại E. Gọi F là giao điểm của tia BA và ED. Chứng minh:
a) Tam giác BDA= tam giác BDE
b) DC=DF
Mik đg gấp. Ai giải đúng và nhanh mik sẽ tick cho!
Cho tam giác ABC vuông tại A . Kẻ tia phân giác BD của góc B ( D thuộc AC ) . Qua D kẻ DE vuông góc BC tại E(ghi giả thiết kết luận và vẽ hình) .
a) Chứng minh AD = DE .
b) Tia ED cắt Tia BA tại F , chứng minh DF = DC .
c) Chứng minh tam giác BFC cân .
cho tam giác abc vuông tại a tia phân giác của góc abc cắt ac tại d kẻ DE vuông với BC tại E gọi F là giao điểm của tia BA và tia FD chứng minh tam giác DFC cân
Tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE= BA
a, cmr: tam giác ABD= tam giác EBD
b, cmr: DE vuông góc BC
c, gọi F là giao điểm của BA và ED. cmr DF= DC