Ta có D, E là hình chiếu của M trên AB, AC
=> DM ⊥ AB và ME ⊥ AC Mà AB ⊥ AC
=> ADME là hình chữ nhật
Ta có D, E là hình chiếu của M trên AB, AC
=> DM ⊥ AB và ME ⊥ AC Mà AB ⊥ AC
=> ADME là hình chữ nhật
Cho tam giác ABC vuông tại A (AB < AC) M là trung điểm của BC. a) AB = 6 , AM = 5 Tính BC, AC. b) D, E là hình chiếu của M lên AB và AC. Chứng minh tứ giác ADME là hình chữ nhật.. c) F là điểm đối xứng của M qua E. Chứng minh tứ giác AMCF là hình thoi. d) Ke đường cao AH của tam giác ABC Chứng minh tam giác DHE vuông tại H.
Cho ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC.
a) Biết AB = 6cm, AM = 5cm. Tính BC, AC.
b) Gọi D, E lần lượt là hình chiếu của M lên AB, AC. Chứng minh ADME là hình chữ nhật.
c) Kẻ đường cao AH của tam giác ABC. Chứng minh DHE vuông tại H.
Cho tam giác ABC vuông. M là trung điểm BC. Gọi D,E lần lượt là hình chiếu của M trên AB và AC. a) tứ giác ADME là hình j ? Vì sao? b) chứng minh DE = 1/2 BC
Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. D, E lần lượt là hình chiếu của M lên AB và AC.
a) Chứng minh: ADME là hình chữ nhật
b) Chứng minh: BDEM là hình bình hành
c) Gọi O là giao điểm của BE và DM, I là trung điểm của EC. Chứng minh: AOMI là hình thang cân
d) Vẽ đường cao AH của tam giác ABC. Tính số đo góc DHE
Cho tam giác ABC vuông tại A có AB<AC. N là trung điểm BC. Gọi M, P lần lượt là hình chiếu của N trên AB, AC. Lấy E sao cho P là trung điểm của NE.
a) Chứng minh M,P lần lượt là trung điểm của AB, AC
b) Tứ giác ANCE là hình gì ( chứng minh hình)
Cho tam giác ABC vuông tại A. M là trung điểm BC. Gọi D,E lần lượt là hình chiếu của M tên AB,AC.
a) Tứ giác ADME là hình gì ? Tại sao ?
b) Chứng minh DE = 1/2 BC
c) Gọi P là trung điểm BM,Q là trung điểm MC. CM tứ giác DPQE là hình bình hành. Từ đó CM tâm đối xứng hình bình hành DPQE trên đoạn AM
d) Tam giác ABC vuông cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật ?
Giải giúp mình câu b,c,d với!!! Thanks
1 . Cho tam giác ABC cân tại A. Gọi D, E, P lần lượt là trung điểm của AB, AC
và BC. Trên tia đối của tia CE lấy điểm M sao cho CM = CE. Chứng minh:
a) Tứ giác BDEP là hình bình hành.
b) Tứ giác CDPM là hình bình hành.
c) P là trọng tâm của tam giác BDM
2 .
Cho tam giác nhọn ABC. Gọi điểm M là trung điểm của đoạn thẳng BC. Từ điểm M vẽ các đường thẳng song song với AC và AB, các đường thẳng song song đó lần lượt cắt AB và AC tại D và E.
1) Chứng minh tứi giác ADME là hình bình hành.
2) Tam giác ABC cần thêm điều kiện gì thì tứ giác ADME là hình chữ nhật, hình vuông?
3) Chứng minh diện tích của tam giác ADE = \(\frac{1}{4}\) diện tích tam giác ABC.
Cho tam giác ABC vuông tại A. M là trung điểm BC. Gọi D,E lần lượt là hình chiếu của M tên AB,AC.
a) Tứ giác ADME là hình gì ? Tại sao ?
b) Chứng minh DE = 1/2 BC
c) Gọi P là trung điểm BM,Q là trung điểm MC. CM tứ giác DPQE là hình bình hành. Từ đó CM tâm đối xứng hình bình hành DPQE trên đoạn AM
d) Tam giác ABC vuông cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật ?
Bài 5 . Cho ABC vuông tại A (AB < AC). Gọi M là trung điểm của cạnh BC. Gọi E và F lần lượt là hình chiếu của M xuống AB và AC.
a) Chứng minh rằng: tứ giác AEMF là hình chữ nhật.
b) Lấy I sao cho F là trung điểm của MI. Chứng minh rằng tứ giác AMCI là hình thoi.
c) Tìm điều kiện của tam giác ABC để tứ giác ABCI là hình thang cân.
d) Lấy D sao cho E là trung điểm của MD. Chứng minh rằng A là trung điểm của DI