a: Xét ΔADE vuông tại E và ΔCDA vuông tại A có
góc CDA chung
=>ΔADE đồng dạng với ΔCDA
b: DE*DC=DA^2=AB^2/4
c: DB^2=DE*DC
=>DB/DE=DC/DB
=>ΔDBC đồng dạng với ΔDEB
=>góc DCB=góc DBE
a: Xét ΔADE vuông tại E và ΔCDA vuông tại A có
góc CDA chung
=>ΔADE đồng dạng với ΔCDA
b: DE*DC=DA^2=AB^2/4
c: DB^2=DE*DC
=>DB/DE=DC/DB
=>ΔDBC đồng dạng với ΔDEB
=>góc DCB=góc DBE
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bài 1: Cho tam giác ABC, trên cạnh AB lấy 2 điểm D và F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H và K.
a) CMR: GH, EK, AB cắt nhau tại 1 điểm
b) CMR: AB = 4HK
Bài 2: Cho tam giác ABC có BD và CE là phân giác, cắt nhau tại I. Gọi S là trung điểm BC, biết BI = 2IS.
a) CMR: tam giác ABC vuông
b) CMR: ID / IB = CD / CB
Bài 3: Cho tam giác ABC vuông cân tại A. Trên cạnh AB và AC lần lượt lấy các điểm D và E sao cho AD = AE. Qua A và D, kẻ các đường thẳng vuông góc với BE cắt BC thứ tự tại S và T. CMR: S là trung điểm của TC
cho tam giác abc vuông tại a đường cao ah kẻ đường phân giác ad của tam giác CHA và đường phân giác bk của tam giác ABC(d thuoc bc ;k thuộc ac) bk cắt lần lượt ah và ad tại e và f cmr a, tam giác AHB đồng dạng với tam giác CHA b, tam gic AEF đồng dạng với tam giác BEH c, KD//AH d, eh/ab=kd/bc
cho tam giác ABC vuông tại A ,kẻ đường cao AH .gọi E,F lần lượt là hình chiếu của H lên AB và ACa) CMR :tứ giác AEHF là hình chữ nhật b) AE.AB=AF .ACc) đương thăng rđi qua A vuông góc với EF cắt BC tại i CMR :i là trung điểm của BC
Cho tam giác ABC vuông tại A có AB<AC. đường cao AH (H thuộc BC) trên tia HC lấy điểm D sao cho HD =HA. Đường thẳng qua D vuông góc với BC , cắt AC tại E.
a CMR: BE.AC=AD.BC
b; Gọi M là trung điểm của BE, CMR: tam giác BHM đồng dạng với tam giác BEC và tính số đo góc AHM.
Giúp vs mik đang cần gấp
Cho đoạn thẳng AB. Gọi O là trung điểm của AB . Trên cùng một nửa mặt phẳng có bờ AB , kẻ các tia Ax, By lần lượt vuông góc với AB . Trên Ax lấy điểm C bất kì ( C khác A) . Đường thẳng O vuông góc với OC cắt tia By tại D
a, CMR : tam giác ACO đồng dạng với tam giác ACD
b, CMR: CO là tia phân giác của góc ACD
c, Kẻ đường cao OM cải tam giác OCD (M thuộc CD) . CMR : AMB là tam giác vuông
BÀI 1: Cho hình chữ nhật ANCD có AD = 6cm, AB = 8cm và hai đường chéo cắt nhau tại O. Qua D kẻ đường thẳng d vuông góc với DB, d cắt tia BC tại E.
a) CMR : tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc với DE tại H. CMR: DC^2 = CH x DE
c) Gọi K là giao điểm của OE và HC. CMR: K là trung điểm của HC và tinh tỉ số \(\frac{S\Delta EHC}{S\Delta EDB}\)
d) CMR : OE,DC,BH đồng quy
BÀI 2 : Cho tam giác ABC vuông tại A (AB<AC) và trung tuyến AD. Kẻ đường thẳng vuông góc với AD tại D lần lượt cắt AC tại E và AB tại .
a) CMR : \(\Delta DCE\) dồng dạng với \(\Delta DFB\)
b) CMR: \(AE\cdot AC=AB\cdot AF\)
c) Đường cao AH của tam giác ABC cắt EF tại I . CMR: \(\frac{S\Delta AEC}{S\Delta AEF}=\left(\frac{AD}{AI}\right)^2\)
Bài 1: Tam giác ABC vuông cân tại A, M thuộc AC. Kẻ tia Ax vuông góc với BM cắt BC tại H. K là điểm đối xứng với C qua H. Kẻ tia Ky vuông góc với BM cắt AB tại I. Tính góc AIM?
Bài 2: Tam giác ABC cân tại A với góc A nhọn. CD là đường phân giác của góc ACB ( D thuộc AB ). Qua D kẻ vuông góc với CD cắt CB tại E. CMR: BD = 1/2 EC.