a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: BM/AN=HB/HA
mà HB/HA=AB/CA
nên BM/AN=AB/CA
Xét ΔABM và ΔCAN có
BM/AN=AB/CA
\(\widehat{ABM}=\widehat{CAN}\)
Do đó: ΔABM\(\sim\)ΔCAN
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: BM/AN=HB/HA
mà HB/HA=AB/CA
nên BM/AN=AB/CA
Xét ΔABM và ΔCAN có
BM/AN=AB/CA
\(\widehat{ABM}=\widehat{CAN}\)
Do đó: ΔABM\(\sim\)ΔCAN
Cho tam giác ABC vuông tại A, đường cao AH (AB<AC). Gọi M và N lần lượt là chân đường vuông góc hạ từ H xuống AB,AC. Gọi K là trung điểm BC. I là giao điểm AK với MN
a) Chứng minh: tam giác AHB ∼ tam giác CHA
b) Cho AB=3, AC=4. Tính AH
c) Chứng minh: AM.BM+AN.CN=BH.CH
d) Chứng minh: \(\dfrac{KH}{BH}=2\left(\dfrac{BK}{AB}\right)^2-1\)
e) Chứng minh: \(\dfrac{1}{HA}=\dfrac{1}{HB}+\dfrac{1}{HC}\)
cho tam giác ABC vuông tại A, vẽ đường cao AH
a. Chứng minh 2 tam giác ACH và BCA đồng dạng
b. Gọi M,N lần lượt là trung điểm của các đoạn BH, AH. Chứng minh AB.AN = BM.CA
c/ Chứng minh CN vuông góc AM
cho tam giác ABC cân tại A .Gọi M là trung điểm của bc .Kẻ đường cao BP .từ M ,kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
a, chứng minh tam giác ABM = tam giác ACM
b, chứng minh BH =CK
Cho tam giác ABC vuông góc tại A có AB=5cm, AC=12cm. Từ A kẻ AH vuông góc BC ( H thuộc BC ) a)chứng minh: tam giác ABH đồng dạng tam giác CAH. b)tính diện tích tam giác ABC và chu vi tam giác ABH. c)gọi M,N lần lượt là trung điểm của BH và AH. Chứng minh AM vuông góc CN
Cho tam giác ABC vuông tại A có đường cao AH
a/ Chứng minh tam giác ABH đồng dạng tam giác CBA.
b/ Gọi M là trung điểm của BH. Kẻ CK vuông góc với AM tại K , CK cắt AH tại I. Chứng minh IA = IH
Cho tam giác ABC vuông tại A, đường cao AH, AB=8 AC=6
a) tính BC
b)Chứng minh tam giác ABC đồng dạng với tam giác HBA, tam giác HAC đồng dạng với tam giác HBA
c) Gọi M,N là trung điểm của BH,AH. Chứng minh Am vuông góc CN
Cho tam giác ABC đều. Trung tuyến AM. Vẽ đường cao MH của tam giác AMC.
a. Chứng minh tam giác ABM đồng dạng tam giác AMH
b. Gọi E, F lần lượt là trung điểm của BM, MH. Chứng minh AB.AF = AM.AE
c. Chứng minh BH vuông góc AF
d. Chứng minh AE.EM = BH.HC
Cho tam giác ABC vuông tại A đường cao AH. Vẽ đường phân giác AD của tam giác CHA , đường phân giác BK của tam giác ABC. Gọi giao của BK và AH, AD lần lượt là E và F. a) chứng minh tam giác AHB đồng dạng với tam giác CHA b) chứng minh tam giác AEF đồng dạng với tam giác BEH c) chứng minh KD //AH d) eh/ad = ed/dc
Cho tam giác ABC vuông tại A đường cao AH
a. Chứng minh tam giác AHC đồng dạng tam giác BHA
b, Cho AB=15cm, AC=20cm. Tính độ dài BC, AH
c, Gọi M là trung điểm của BH, N là trung điểm của AH. Chứng minh: CN vuông góc AM