Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh nguyễn

Cho tam giác ABC vuông tại A . Gọi M là trung điểm của BC . Từ M , kẻ ME , MF lần lượt vuông góc với AB , AC

a) Chứng minh tứ giác AEMF là hình chữ nhật

b) Gọi O là giao điểm của AM và EF ; K là điểm đối xứng với M qua AC . Chứng minh 3 điểm B , O , K thẳng hàng

c) Tìm điều kiện của tam giác ABC để tứ giác ABCK là hình thang cân . Khi đó nếu AM = 5cm , hãy tính diện tích của tam giác ABC

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

b: Ta có: AEMFlà hình chữ nhật

=>AM cắt EF tại trung điểm của mỗi đường và AM=EF

=>O là trung điểm chung của AM và EF

K đối xứng M qua AC

=>AC vuông góc MK tại trung điểm của MK

ta có: AC\(\perp\)MK

AC\(\perp\)MF

MK,MF có điểm chung là M

Do đó: M,K,F thẳng hàng

=>F là trung điểm của MK

Xét ΔABC có MF//AB

nên \(\dfrac{MF}{AB}=\dfrac{CM}{CB}=\dfrac{1}{2}\)

mà \(\dfrac{MF}{MK}=\dfrac{1}{2}\)(F là trung điểm của MK)

nên \(MK=AB\)

Xét tứ giác ABMK có

AB//MK

AB=MK

Do đó: ABMK là hình bình hành

=>AM cắt BK tại trung điểm của mỗi đường

mà O là trung điểm của AM

nên O là trung điểm của BK

=>B,O,K thẳng hàng

c: Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có AC\(\perp\)MK

nên AMCK là hình thoi

=>AK//CM và CA là phân giác của góc KCM

=>AK//CB

Xét tứ giác ABCK có AK//BC

nên ABCK là hình thang

Để ABCK là hình thang cân thì \(\widehat{KCM}=\widehat{ABC}\)

=>\(\widehat{ABC}=2\cdot\widehat{ACB}\)

mà \(\widehat{ABC}+\widehat{ACB}=90^0\)

nên \(\widehat{ABC}=\dfrac{2}{3}\cdot90^0=60^0;\widehat{ACB}=90^0-60^0=30^0\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên BC=2AM=10(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(AC=10\cdot sin60=5\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)

\(=\dfrac{1}{2}\cdot5\sqrt{3}\cdot10\cdot sin30=5\cdot5\sqrt{3}\cdot\dfrac{1}{2}=\dfrac{25\sqrt{3}}{2}\left(cm^2\right)\)


Các câu hỏi tương tự
Phạm Anh Tú
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Bùi Hữu Vinh
Xem chi tiết
Bùi Hữu Vinh
Xem chi tiết
Lưu thị  thu hương
Xem chi tiết
Hữu Phúc
Xem chi tiết
Mai Ngoc
Xem chi tiết
Le Canh Nhat Minh
Xem chi tiết
hatsune miku
Xem chi tiết