b: Xét ΔMHC vuông tại H và ΔMAE vuông tại A có
\(\widehat{HMC}=\widehat{AME}\)
Do đó: ΔMHC\(\sim\)ΔMAE
Suy ra: \(\dfrac{MH}{MA}=\dfrac{MC}{ME}\)
hay \(MA\cdot MC=MH\cdot ME\)
b: Xét ΔMHC vuông tại H và ΔMAE vuông tại A có
\(\widehat{HMC}=\widehat{AME}\)
Do đó: ΔMHC\(\sim\)ΔMAE
Suy ra: \(\dfrac{MH}{MA}=\dfrac{MC}{ME}\)
hay \(MA\cdot MC=MH\cdot ME\)
cho tam giác ABC vuông tại a,ABlớn hơn AC. M là 1 điểm tùy ý trên cạnh BC.Qua M kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đoạn AB tại E và cắt đường thẳng AC tại F.
a, chứng minh tam giác ABC đồng dạng với tam giác MFC.
b, chứng minh:BE nhân BA bằng BM nhân BC.
c,chứng minh BAM bằng ECB. Gọi K là giao điểm của đường thẳng CE và BF.
chứng minh AB là phân giác của góc MAK.
giúp e nốt bài này với ạh
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường
vuông góc kẻ từ H đến AB, AC. Từ A kẻ đường thẳng vuông góc với DE, đường thẳng này cắt cạnh BC
tại điểm M. Chứng minh: M là trung điểm của BC
cho tam giác abc vuông cân tại a. trên cạnh ab lấy điểm d trên cạnh ac lấy điểm e sao cho ad=ae. qua d kẻ đường thẳng vuông góc với BE cắt BC ở k. qua a kẻ đường thẳng vuông góc với BE cắt BC ở h. gọi m là giao điểm cua dk và ac. chứng minh a) tam giác BAE = tam giác CAD b)tam giác MDC cân c) hk=hc
Cho tam giác ABC vuông cân tại a trên cạnh ab lấy điểm d trên cạnh ac lấy điểm e sao cho AD bằng AE từ C kẻ đường thẳng vuông góc với BE cắt AB tại I 1 chứng minh rằng be bằng CI 2 Qua D và A kẻ đường thẳng vuông góc với BE cắt BC lần lượt tại m và n CMR MN= NC
Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại điểm I, cắt đường thẳng Ac tại điểm D.
a) Chứng minh: Tam giác ABC đồng dạng với tam giác MDC
b) Chứng minh: BI.BA = BM.BC
Cho tam giác ABC vuông tại A, AB = 6cm, BC = 10cm, điểm D thuộc AC sao cho DC = 3cm. Qua D kẻ đường thẳng vuông góc với AC và cắt cạnh BC tại M. Đường thẳng vuông góc với BC tại M cắt BA tại E. Chứng minh:
a) tam giác ABC đồng dạng với tam giác MDC. Tính độ dài MD, MC.
b) tam giác ABC đồng dạng với tam giác MBE và BE.BA = BM.BC
c) góc BMA= góc BEC
Cho tam giác ABC vuông tại A. AB = 7,5 cm; BC = 12,5cm.
a) Tính diện tích tam giác ABC.
b) Lấy điểm M trên cạnh AB sao cho AM: MB = 1:2. Từ M kẻ đường thẳng song song với BC cắt trung tuyến AF tại E và cắt cạnh AC tại N. Chứng minh E là trung điểm của MN.
c) Gọi G, H, I thứ tự là trung điểm của MC, NB và FE. Chứng minh G, H, I thẳng hàng và tính diện tích ∆IHF
Cho tam giác ABC vuông cân ở C. Lấy điểm E trên cạnh AC. Từ A kẻ đường thẳng vuông góc với
BE cắt đường thẳng BE tại H và BC ở K.
a) Chứng minh rằng: KH.KA=KC.KB;
b) Chứng minh tam giác KHC và tam giác KBA đồng dạng. Từ đó tính góc KHC?
c) KE cắt AB tại M, chứng minh rằng khi E thay đổi trên đoạn AC thì AE.AC + BE.BH có giá trị
không đổi;
d) Gọi I và J lần lượt là trung điểm của EB và AK. Chứng minh rằng IJ vuông góc với MC.