a: \(\widehat{ACB}=90^0-30^0=60^0\)
d: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AN=BC
a: \(\widehat{ACB}=90^0-30^0=60^0\)
d: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AN=BC
cho tam giác ABC có cạnh AB=3cm , AC=4cm , BC=5 cm .
a, c/m TAM GIÁC ABC vuông
b,vẽ đường trung tuyến AM của tam giác ABC so sánh GÓC BAM và GÓC AMB.
c, trên tia đối của tia MA lấy điểm N sao cho MN=MA . chứng minh NC vuông góc với AC .
d, trên tia đối của tia CB lấy điểm D sao cho C là trung điểm của MD . trên tia đối của tia BA lấy điểm E sao cho BA = BE . gọi I là giao điểm của AN và ED . Chứng minh I là trung điểm của ED .
GIÚP EM NHANH VỚI Ạ
Cho tam giác ABC. lấy M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a, Chứng minh tam giác AMB = tam giác DMC;
b, Chứng minh AC // BD;
c, Kẻ AH vuông góc với BC, DK vuông góc với BC (H, K thuộc BC). Chứng minh BK = CH;
d, Gọi I là trung điểm của AC, vẽ điểm E sao cho I là trung điểm của BE. Chứng minh C là trung điểm của DE
cho tam giác ABC vuông tại A có góc ACB=65 độ.Kẻ AH vuông góc BC tại H,trên tia đối của tia HA lấy điểm E sao cho HE=HA.Gọi M là trung điểm cạnh BC,trên tia đối của MA lấy điểm D sao cho MD=MA.
a,Tính số đo góc ABC và so sánh AB và AC.
b,Chứng minh tam giác ABH bằng tam giác EBH,từ đó suy ra tam giác ABE cân tại B
c, Chứng minh tam giác BEC vuông tại E
d,Chứng minh ED song song với BC
Cho tam giác ABC cân tại A Kẻ AH vuông góc với BC H thuộc BC Gọi M là trung điểm của BH trên tia đối của tia ma lấy điểm N sao cho MN = MA
A) chứng minh rằng tam giác AMH bằng tam giác NMB và NB vuông góc với BC
b) Chứng minh rằng AH= MB Từ đó suy ra NB nhỏ hơn AB
C) Chứng minh rằng góc BAM nhỏ hơn góc MAH
D) Gọi I là trung điểm của NC chứng minh rằng ba điểm A,H,I thẳng hàng
PHẢI MẤY THÁNG RỒI MỚI QUAY LẠI ĐÂY ĐÓ CÁC BẠN À:))))))) CÁC BẠN GIÚP MÌNH VỚI NHA
cho tam giác ABC vuông tại A có góc B bằng 60 độ. Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho DM=MA
a)Tính góc ACB
b)Chứng minh: Tam giác ABM=tam giác DCM và AB//CD
c)Chứng minh: AM=1/2 BC
Cho tam giác ABC vuông tại A có BC=2AB
a) Vẽ đường cao AH. Trên tia đối của tia HA, lấy điểm K sao cho HK=HA. Chứng minh tam giác HBA=HBK
b) Chứng minh BK vuông góc tại K
c) Gọi M là trung điểm của BC.Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Chứng minh DC//AB
d) Chứng minh AD=BC. Chứng minh tam giác ABM đều và tính số đo các góc của tam giác ABC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC lấy m là trung điểm cạnh BC trên tia đối của ma lấy điểm d sao cho ma = MD A chứng minh tam giác AMB bằng tam giác DMC b) chứng minh AC song song với BD Kẻ AH vuông góc với BC dh vuông góc với BC h k thuộc BC chứng minh BK = CH Gọi I là trung điểm của AC vẽ điểm e sao cho I là trung điểm của be chứng minh c là trung điểm của de
Cho tam giác ABC có 3 góc nhọn, đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD.
a) Chứng minh: tam giác AHB = tam giác DHB
b) Chứng minh rằng: BC là tia phân giác của góc ABD
c) Gọi M là trung điểm của Bc. Trên tia đối của tia MA lấy điểm F sao cho MF = MA. Từ F kẻ FN vuông góc với BC (N thuộc BC). Chứng minh: HD = NF