cho tam giác ABC . Gọi M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh tam giác ABM=tam giác DCM và AB///DC
b) Kẻ BE vuông góc với AM( E thuộc AM ), CF vuông góc với DM( F thuộc DM ). Chứng minh: M là trung điểm của EF
Cho tam giác ABC; gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác ABM = Tam giác DCM
b) Chứng minh: AB // CD
c) Kẻ BH vuông góc AM ( H thuộc AM ), CK vuông góc với DM ( K thuộc DM ), cho biết MK = 1,5cm. Tính độ dài của đoạn thẳng HK
Cho tam giác ABC có AB = AC,gọi M là trung điểm của BC. a)Chứng minh:∆ABM = ∆ACM. b)Trên tia đối của tia MA lấy điểm D sao cho MA = MD.Chứng minh:∆ABM = ∆DCM và AB//CD. c)Chứng minh tam giác ABM vuông tại M
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM=MD
a/ Chứng minh tam giác ABM=tam giác DCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc BC
d/ Tìm điều kiện của tam giác ABC để góc ADC bằng 36 độ
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.
Cho tam giác ABC có : AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD a/ Chứng minh ABM=DCM b/ Chứng minh AB || DC c/ Chứng minh AM vuông góc với BC d/ Tìm điều kiện của tam giác ABC để A =30°. Chứng minh AD = BH e/ Trên tia đối của tia AC lấy H sao cho AC=AH.Chứng minh AD=BH f Chứng minh tam giác HBC vuông (Chỉ cần làm câu e và f
Cho tam giác ABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh: tam giác ABM bằng tam giác DCM
b) Chứng minh: AB // DC
c)Kẻ BE vuông góc với AM ( E thuộc AM), CF vuông góc với DM (F thuộc DM). Chứng minh M là trung điểm của EF.
Cho tam giác ABC vuông tại A có AB<AC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD
a) Chứng minh tam giac ABM = tam giác DCM. Từ đó suy ra AB//CD
b)Trên tia đối của tian CD lấy điểm E sao cho CA = Ce, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE
c) Kẻ AH vuông góc với BC (H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh: AF=BC
cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC(H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: a) góc ABM = góc DCM b) Tam giác ACD vuông c) MA= BC/2 d) AB^2 - AC^2 = HB^2 - HC^2