a: AB=8cm
b: Xét ΔMAC và ΔMBD có
MA=MB
\(\widehat{AMC}=\widehat{BMD}\)
MC=MD
Do đó: ΔMAC=ΔMBD
a) Xét tam giác ABC vuông tại A:
\(AB^2+AC^2=BC^2\) (Định lí Pytago).
Thay: \(AB^2+6^2=10^2.\Leftrightarrow AB=\sqrt{10^2-6^2}=8\left(cm\right).\)
b) CM là đường trung tuyến của tam giác ABC vuông tại A (gt).
\(\Rightarrow\) M là trung điểm của AB.
Xét tam giác MAC và tam giác MBD:
+ MA = MB (M là trung điểm của AB).
+ MC = MD (gt).
+ \(\widehat{AMC}=\widehat{BMD}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác MAC = Tam giác MBD (c - g - c).