Cho tam giác ABC vuông tại A, đường trung tuyến AM. Từ M kẻ ME vuông góc với AB (E thuộc AB), MF vuông góc với AC (F thuộc AC)
a) Tứ giác AEMF là hình gì? Vì sao?
b) Cho biết AB = 6 cm, AC = 8 cm. Tính diện tích tứ giác AEMF
c) Gọi N là điểm đối xứng với A qua M. Chứng minh: tứ giác ABNC là hình chữ nhật
d) Tam giác ABC có thêm điều kiện gì để tứ giác AEMF là hình vuông
(Gải nhanh giúp mik với! Mk cần gấp! Cảm ơn)
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
=>AE=3cm
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
=>AF=4cm
\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)
c: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật