Cho tam giác abc vuông tại A (AB<AC), đường cao AH . Kẻ HD,HE lần lượt vuông góc với AB,AC.Đường thẳng qua A vuông góc với DE cắt BC tại I
a,CM:I là trung điểm của BC
b,Kẻ đường thẳng vuông góc với AI tại A cắt đường thẳng BD tại K.CM AB là tia phân giác của góc KAH
c,CM AD>BD + AE>EC \(\le AI^2\)
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 600. D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ tia Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt Cx tại F. Chứng minh BF vuông góc CF.
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM vuông góc với AB ( M thuộc AB ). Kẻ HN vuông góc AC ( N thuộc AC ). Gọi E là trung điểm AC, Kẻ AI vuông góc với BE tại I. Cm góc EIC= góc BIH
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.
Cho tam giác ABC có 2 đường cao CP và BQ cắt nhau tại H.Gọi M là trung điểm của BC. a) CM tứ giác BPQC nội tiếp. b) Gọi D là điểm đối xứng với C qua H.Đường thẳng đi qua H vuông góc với HM cắt AB,AC theo thứ tự tại E,F. CM rằng : DE vuông góc BH. c) CM ME = MF.
Cho tam giac ABC vuông tại A, kẻ đường cao AH gọi M,N lần lượt là trung điểm của AB và AC. CMR: HM vuông góc với HN.
Cho tam giác ABC vuông tại A có AM là đường trung tuyến, AH là đường cao. Trên tia đối của tia AM lấy P (P khác A). Các đường thẳng qua H vuông góc với AB và AC lần lượt cắt đường thẳng PB và PC tại Q và R tương ứng. CM: A là trực tâm tam giác PQR
Bài 9: Cho hình bình hành ABCD có BC = 2 AB và A = 600. Gọi M, N lần lượt trung điểm của
BC và AD. E là điểm đối xứng với A qua B.
a.Tứ giác ABMN là hình gì? Vì sao?
b.Chứng minh tứ giác AEMN là hình thang cân.
Bài 10: Cho ba tia Ox, Oy, Oz tạo thành góc xOy = góc yOz=600. Một đường thẳng cắt ba tia đó lần lượt tại A, B, C. Qua B kẻ BB’ songsong với Oz(B’ thuộc Ox). Chứng minh
Tam giác OBB’ đều
Bài 11 : Cho tam giác ABC vuông tại A, AB=3 cm, AC =4 cm, phân giác AD. Kẻ DE vuông góc với AC, DF vuông góc với AB.
Tứ giác AEDF là hình gì ?
Tính SAEDF.
Bài 12*: Cho tam giác ABC vuông cân tại C, trung tuyến AM. Qua C kẻ đường thẳng vuông góc với AM cắt AB tại D. Chứng minh AD= 2BD.
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK