a: Xét (I) có
ΔHDB nội tiếp
HB là đường kính
Do đó: ΔHDB vuông tại D
=>HD\(\perp\)AB tại D
Xét (K) có
ΔCEH nội tiếp
CH là đường kính
Do đó: ΔCEH vuông tại E
=>HE\(\perp\)AC tại E
Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
nên ADHE là hình chữ nhật
b: Xét ΔHAB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔHAC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AB\cdot AD=AE\cdot AC\)