Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
An Đinh Khánh

Cho tam giác ABC vuông tại A, đường cao AH, kẻ HE vuông góc AB, Hf vuông góc AC ( E thuộc AB; F thuộc AC)
Chứng minh \(\sqrt{S_{BEH}}+\sqrt{S_{CFH}}=\sqrt{S_{ABC}}\)

Helppp mik cần gấp ạ

Đinh Trí Gia BInhf
26 tháng 8 2023 lúc 11:08


Ta có: tam giác vuông EBH \(\sim\) tam giác vuông ABC (gt)
=>\(\dfrac{S\Delta EBH}{S\Delta ABC}=\left(\dfrac{BH}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta EBH}}{\sqrt{S\Delta ABC}}=\dfrac{BH}{BC}\left(1\right)\)
Ta có tam giác vuông FHC \(\sim\) tam giác vuông ABC (g.g)
=>\(\dfrac{S\Delta FHC}{S\Delta ABC}=\left(\dfrac{HC}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HC}{BC}\left(2\right)\)
\(\)Từ (1)và (2) =>\(\dfrac{\sqrt{S\Delta EBH}+\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HB+HC}{BC}=\dfrac{BC}{BC}=1\)
Vậy \(\sqrt{S\Delta_{EBH}}+\sqrt{S\Delta_{FHC}}=\sqrt{S\Delta_{ABC}}\left(đpcm\right)\)
chucbanhoctot!

Đinh Trí Gia BInhf
26 tháng 8 2023 lúc 11:09

thực ra ở đây ko thể c/m đc yêu cầu của bạn đâu, cần phải có AEHF là hcn mới ra cơ ạ 


Các câu hỏi tương tự
Lê Văn Hoàng
Xem chi tiết
huy tạ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Linh Linh
Xem chi tiết
Võ Tuấn Nguyên
Xem chi tiết
Võ Tuấn Nguyên
Xem chi tiết
Võ Tuấn Nguyên
Xem chi tiết
Thảo Lê Duy
Xem chi tiết
nguoi ngu
Xem chi tiết