Hình tự vẽ
Xét tam giác HPB và HQC
góc B=C, HB=HC, BHP=CHQ
=> PB=QC
=>AP=AQ=> tam giác APQ vuông cân tại A
Hình tự vẽ
Xét tam giác HPB và HQC
góc B=C, HB=HC, BHP=CHQ
=> PB=QC
=>AP=AQ=> tam giác APQ vuông cân tại A
Cho tam giác abc vuông tại A, đường cao AH, I là giao điểm 3 đg phân giác tam giác AHB, J là giao điểm 3 đường phân giác tam giác AHC. Đường thằng IJ cắt Ab tại M, Ac tại N. Đường thẳng HI cắt AB tại P, HJ cắt AB tại Q.
a, CMR tam giác APQ vuông cân
b, CM AM=AN
cho tam giác ABC vuông tại A(AC>AB), đường cao AH(H thuộc BC). Tia phân giác trong goc HAC cắt HC tại M, gọi N là trung điểm AC. a)Cm tam giác AHB đồng dạng với CHA rồi suy ra MH/MC=HB/AB b)MN cắt AH tại E và cắt AB tại F, Cm AM//BE. Kẻ MG vuông góc với AB. Cm 2/FG=1/FA + 1/FB
cho tam giác ABC vuông tại A(AC>AB), đường cao AH(H thuộc BC). Tia phân giác trong goc HAC cắt HC tại M, gọi N là trung điểm AC. a)Cm tam giác AHB đồng dạng với CHA rồi suy ra MH/MC=HB/AB b)MN cắt AH tại E và cắt AB tại F, Cm AM//BE. Kẻ MG vuông góc với AB. Cm 2/FG=1/FA + 1/FB
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
cho tam giác abc vuông tại a, đường cao AH, kẻ HD vuông góc với AB. Gọi I là giao điểm AH và CD. Đường thẳng BI cắt AC tại K
a) CM tam giác ADH đồng dạng tam giác AHB
b)AD.AB = HB.HC
c) K là giao điểm của AC
Tam giác ABC nhọn , đường cao AH, điểm M tuỳ ý thuộc BC. Đường thẳng qu A và góc AM cắt đường thẳng qua M và góc AB tại E, cắt đường thẳng qua M và góc AC tại F. Đường thẳng qua C vuông góc BF cắt đường thẳng AH tại N.
a, CM : Tam giác NAC đồng dạng tam giác BMF
b, ME giao với AB tại I, MF giao với AC tại K.CM:MI.ME=MK.MF
c,CM: AB/AC=BM/CM.ME/MF từ đó suy ra tam giác ABN đồng dạng với tam giác MEC
d,CM: AH,BF,CE đồng qui
Cho tam giác ABC vuông tại A(AB<AC),đường cao AH.Đường phân giác của góc AHB cắt AB tại D, đường phân giác góc AHC cắt AC tại E, đường thẳng DE cắt AH ở I và cắt BC ở K.Chứng minh DI.EK=DK.EI
Cho tam giác ABC vuông tại A đường cao AH.Gọi M và N là giao điểm của 3 đường phân giác trong của tam giác AHB và AHC. MN cắt AB, AH, AC tại I,E,K.a, Chứng minh \(BM\perp AN\) b. Chứng minh: \(ME.NK=MI.NE\) c, Biết diện tích tam giác ABC là S. Tính diện tích lớn nhất của tam giác AIK theo S
Cho tam giác ABC vuông tại A. Điểm I là trung điểm của cạnh BC. Qua I kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại M. Tam giác ABC có thêm điều kiện gì thì tứ giác AMIN là hình vuông?
Cho tam giác ABC. O là giao điểm các đường phân giác. Ta đặt AB=c, AC=b, BC=a. AO cắt BC tại D. Tính DB theo a, b, c