a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
CH=BC-BH=6,4(cm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
CH=BC-BH=6,4(cm)
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC) A. Chứng minh tam giác AHB đồng dạng với tam giác CAB B. Cho biết AB= 8cm, AC= 6cm. Tính độ dài AH, BH? C. Chứng minh AH²= HB.HC
Cho tam giác ABC vuông tại A có đường cao AH, phân giác BD a) Chứng minh tam giác ABC đồng dạng tam giác HBA và AB^2 = BH .BC b) Giả sử AB = 6cm; AC = 8cm. Tính BC và AH. c) BD cắt AH tại E. Chứng minh AD.AE = CD.EH d) Lấy điểm K đối xứng với H qua A. Chứng minh rằng đường thẳng đi qua C và vuông góc với BK sẽ chia tam giác ACH thành hai phần có diện tích bằng nhau.
Cho tam giác ABC vuông tại A có đường cao AH, phân giác BD
a) Chứng minh tam giác ABC đồng dạng tam giác HBA và AB^2 = BH .BC
b) Giả sử AB = 6cm; AC = 8cm. Tính BC và AH.
c) BD cắt AH tại E. Chứng minh AD.AE = CD.EH
d) Lấy điểm K đối xứng với H qua A. Chứng minh rằng đường thẳng đi qua C và vuông góc với BK sẽ chia tam giác ACH thành hai phần có diện tích bằng nhau.
Cho tam giác ABC vuông tại A có AB = 6cm,AC= 8cm. Kẻ đường cao AH. (H thuộc BC)
a) chứng minh : tam giác ABC đồng dạng tam giác HBA
b) tính độ dài các cạnh BC, AH?,
c)kẻ HM vuông góc với AB,HN vuông góc với AC.chứng minh tam giác AMN dồng dạng với tam giác ACB
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Tính độ dài các cạnh BC, AH ,BH
Cho /\ABC vuông tại A có AB=6cm, AC=8cm vẽ đường cao AH a. Tính độ dài BC b. Chứng minh tam giác ABC đồng dạng với tam giác HBA, viết tỉ số đồng dạng c. Tính độ dài AH, Bh
cho tam giác ABC vuông tại A vẽ đường cao AH,H thuốc BC.biết AB=6cm,AC= 8cm a. chứng minh tam giác HBA đồng dạng với với tam giác ABC b. tính BC,AH,BH c. kẻ HI vuông góc với AC tại I chứng minh HC^2=IC*AC
Cho tam giác ABC vuông tại A, có AB=6cm , AC=8cm . Vẽ đường cao AH (H thuộc BC) và tia phân giác BK (K thuộc AC).
a/ tìm độ dài các đoạn thẳng BC,AK,CK
b/Chứng minh: tam giác ABC đồng dạng tam giác HBA .Chứng minh : AB^2=BH.BC.
c/ tìm tỉ số đồng dạng của 2 tam giác ABCvà tam giác HBA
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. Đường cao AH(H thuộc BC); Tia phân giác góc A cắt BC tại D.
a)Chứng minh tam giác HAC đồng dạng tam giác HBA
b)Tính độ dài đoạn thẳng AD
Giải giúp mình câu b với ạ