Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
H Phương Nguyên

Cho tam giác ABC vuông tại A có AB = 6cm,AC= 8cm. Kẻ đường cao AH. (H thuộc BC)

a) chứng minh : tam giác ABC đồng dạng tam giác HBA

b) tính độ dài các cạnh BC, AH?,

c)kẻ HM vuông góc với AB,HN vuông góc với AC.chứng minh tam giác AMN  dồng dạng với tam giác ACB

Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 22:47

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: BC=10cm

AH=4,8cm

c: Xét ΔABH vuông tại H có HM là đườg cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB

Thanh Hoàng Thanh
10 tháng 3 2022 lúc 22:53

\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b)\) Xét \(\Delta ABC\) vuông tại A:

\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)

Các câu hỏi tương tự
Oanh Nè
Xem chi tiết
Được Hảo Hán!!
Xem chi tiết
Được Hảo Hán!!
Xem chi tiết
Lê Văn Anh Minh
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Girl sinh gái
Xem chi tiết
N.h.i
Xem chi tiết
N.h.i
Xem chi tiết
Yuuki
Xem chi tiết