Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC. Chứng minh rằng AM vuông góc với DE.

Cao Minh Tâm
8 tháng 1 2017 lúc 16:07

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tứ giác ADHE, ta có:

∠ A = 90 0  (gt)

∠ (ADH) =  90 0  (vì HD ⊥ AB)

∠ (AEH) =  90 0  (vì HE ⊥ AC)

Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông).

+ Xét ∆ ADH và  ∆ EHD có :

DH chung

AD = EH ( vì ADHE là hình chữ nhật)

∠ (ADN) =  ∠ (EHD) =  90 0

Suy ra:  ∆ ADH =  ∆ EHD (c.g.c)

⇒  ∠ A 1 =  ∠ (HED)

Lại có:  ∠ (HED) +  ∠ E 1 =  ∠ (HEA) =  90 0

Suy ra:  ∠ E 1 +  ∠ A 1 =  90 0

∠ A 1 = ∠ A 2 (chứng minh trên) ⇒  ∠ E 1 +  ∠ A 2 =  90 0

Gọi I là giao điểm của AM và DE.

Trong  ∆ AIE ta có:  ∠ (AIE) = 180o – ( ∠ E 1 +  ∠ A 2 ) = 180 0  -  90 0  =  90 0

 

Vậy AM ⊥ DE.


Các câu hỏi tương tự
giang đào phương
Xem chi tiết
DŨng
Xem chi tiết
MixiGaming
Xem chi tiết
Lê Võ Anh Quân
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Boo
Xem chi tiết
Phạm Ngọc Thành
Xem chi tiết
Nghĩa Nguyễn Hoàng Tuấn
Xem chi tiết