Áp dụng định lý Pitago:
\(AB=\sqrt{BC^2-AC^2}=2\sqrt{5}\)
Áp dụng Pitago cho tam giác vuông BCD:
\(CD=\sqrt{BD^2-BC^2}=3\sqrt{5}\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{BC}{AC}=\dfrac{6}{4}=\dfrac{3}{2}\\\dfrac{CD}{AB}=\dfrac{3\sqrt{5}}{2\sqrt{5}}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{CD}{AB}\)
Xét hai tam giác BCD và CAB có:
\(\left\{{}\begin{matrix}\dfrac{BC}{AC}=\dfrac{CD}{AB}\\\widehat{BCD}=\widehat{CAB}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BCD\sim\Delta CAB\left(c.g.c\right)\)
\(\Rightarrow\widehat{CBD}=\widehat{ACB}\)
\(\Rightarrow BD||AC\) (hai góc so le trong bằng nhau)